Войти
Логопедический портал
  • Сочинение герасим и татьяна в рассказе тургенева муму
  • Письменный рассказ о героях, живущих в доме барыни из «Муму» И
  • Про россию на китайском языке Как нельзя называть женщин в Китае
  • Что значит моя мечта. Значение слова мечтать. Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова
  • Многозначное слово «mean Как переводится слово mean
  • Лётчик-ас кожедуб иван никитович — трижды герой ссср
  • Зарождение наблюдательной астрономии в древнем египте, древнем китае, древней индии, древней греции, древнем вавилоне. Астрономия в древней греции Зарождение астрономии в греции

    Зарождение наблюдательной астрономии в древнем египте, древнем китае, древней индии, древней греции, древнем вавилоне. Астрономия в древней греции Зарождение астрономии в греции

    Экзаменационный реферат

    «Астрономия

    Древней Греции»



    Выполнила

    Ученица 11а класса

    Пересторонина Маргарита


    Преподаватель

    Жбанникова Татьяна Владимировна


    План
    I Вступление.

    II Астрономия древних греков.

    1. На пути к истине, через познание.

    2. Аристотель и геоцентрическая система мира.

    3. Тот самый Пифагор.

    4. Первый гелиоцентрист.

    5. Труды Александрийских астрономов

    6. Аристарх: совершенный метод (истинные его труды и успехи; рассуждения выдающегося ученого; великая теория - неудача, как следствие);

    7. “Phaenomena” Евклида и основные элементы небесной сферы.

    9. Календарь и звезды древней греции.

    III Заключение: роль астрономов древней Греции.


    Вступление

    …Аристарх Самосский в своих «Предложениях»-

    допускал, что звезды, Солнце не изменяют

    своего положения в пространстве, что Земля

    движется по окружности около Солнца,

    находящегося в центре ее пути, и что

    центр сферы неподвижных звезд

    совпадает с центром Солнца.

    Архимед. Псамит.

    Оценивая проделанный человечеством путь в поисках истины о Земле, мы вольно или невольно обращаемся к древним грекам. Многое зародилось у них, но и через них немало дошло до нас от других народов. Так распорядилась история: научные представления и территориальные открытия египтян, шумеров и прочих древневосточных народов нередко сохранились лишь в памяти греков, а от них стали известны последующим поколениям. Яркий пример тому - подробные известия о финикийцах, населявших узкую полосу восточного побережья Средиземного моря и в ІІ-І тысячелетиях до н. э. открывших Европу и приморские районы Северо-западной Африки. Страбон, римский ученый и грек по происхождению, в своей семнадцатитомной «Географии» написал: «До настоящего времени эллины многое заимствуют у египетских жрецов и халдеев». А ведь Страбон скептически относился к своим предшественникам, в том числе и к египтянам.

    Расцвет греческой цивилизации приходится на период между VI веком до н.э. и серединой II века до н. э. Хронологически он почти совпадает со временем существования классической Греции и эллинизма. Это время с учетом нескольких столетий, когда поднялась, процветала и погибла Римская империя, называется античным Его исходным рубежом принято считать VII-II века до н.э., когда быстро развивались полисы-греческие города-государства. Эта форма государственного устройства стала отличительной чертой греческого мира.

    Развитие знаний у греков не имеет аналогов истории того времени. Масштабы постижения наук можно представить хотя бы по тому факту, что менее чем за три столетия (!) прошла свой путь греческая математика – от Пифагора до Евклида, греческая астрономия – от Фалеса до Евклида, греческое естествознание – от Анаксимандра до Аристотеля и Феофраста, греческая география – от Геккатея Милетского до Эратосфена и Гиппарха и т. д..

    Открытие новых земель, сухопутные или морские странствия, военные походы, перенаселения в благодатные районы – все это нередко мифологизировалось. В поэмах с присущим грекам художественным мастерством мифическое соседствовало с реальным. В них излагались научные познания, сведения о природе вещей, а также географические данные. Впрочем, последние порой бывает трудно идентифицировать с сегодняшними представлениями. И, тем не менее, они – показатель широких воззрений греков на ойкумену.

    Греки уделяли большое внимание конкретно – географическому познанию Земли. Даже во время военных походов их не покидало желание записать все то, что видели в покоренных странах. В войсках Александра Македонского выделили даже специальных шагомеров, которые подсчитывали пройденные расстояния, составляли описание маршрутов движения и наносили их на карту. На основе полученных ими данных Дикеарх, ученик знаменитого Аристотеля, составил подробную карту тогдашней по его представлению ойкумены.

    …Простейшие картографические рисунки были известны еще в первобытном обществе, задолго до появления письменности. Об этом позволяют судить наскальные рисунки. Первые карты появились в Древнем Египте. На глиняных табличках наносились контуры отдельных территорий с обозначением некоторых объектов. Не позднее 1700 года до н. е. египтяне составили карту освоенной двух тысячекилометровой части Нила.

    Картографированием местности занимались также вавилоняне, ассирийцы и другие народы Древнего востока…

    Какой же виделась Земля? Какое они отводили себе место на ней? Каковы были их представления об ойкумене?

    Астрономия древних греков

    В греческой науке твердо установилось мнение (с различными, конечно, вариациями), что Земля подобна плоскому или выпуклому диску, окруженному океаном. От этой точки зрения многие греческие мыслители не отказались даже тогда, когда в эпоху Платона и Аристотеля, казалось, возобладали представления о шарообразности Земли. Увы, уже в те далекие времена прогрессивная идея пробивала себе дорогу с большим трудом, требовала от своих сторонников жертв, но, к счастью, тогда еще «не казался ересью талант», а «в аргументах не ходил сапог».

    Идея диска (барабана или даже цилиндра) была очень удобна для подтверждения широко распространенного убеждения о срединном положении Эллады. Она же была вполне приемлема для изображения суши, плавающей в океане.

    В пределах дискообразной (а позднее шарообразной) Земли выделялась ойкумена. Что по – древнегречески означает вся обитаемая земля, вселенная. Обозначение одним словом двух, казалось бы, разных понятий (для греков тогда они представлялись одно-порядковыми) глубоко симптоматично.

    О Пифагоре (VI век до н.э.) сохранилось мало достоверных сведений. Известно, что родился он на острове самос; вероятно, в молодости посетил Милет, где учился у Анаксимандра; может быть, совершил и более далекие путешествия. Уже в зрелом возрасте философ переселился в город Кротон и основал там нечто вроде религиозного одена – Пифагорейское братство, которое распространило свое влияние на многие греческие города Южной Италии. Жизнь братства была окружена тайной. О его основателе Пифагоре ходили легенды, которые, по-видимому, имели под собой какую-то основу: великий ученый был не менее великим политиком и провидцем.

    Основой учения Пифагора была вера в переселение душ и гармоничное устройство мира. Он полагал, что душу очищает музыка и умственный труд, поэтому пифагорейцы считали обезательным совершествование в “четырех искусствах” – арифметике, музыке, геометрии и астрономии. Сам Пифагор является основоположником теории чисел, а доказанная им теорема известна сегодня каждому школьнику. И если Анаксагор и Демокрит в своих взглядах на мир развивали идею Анаксимандра о физических причинах природных явлений, то Пифагор разделял его убежденность в математической гармонии космоса.

    Пифагорейцы властвовали в греческих городах Италии несколько десятилетий, потом были разгромлены и отошли от политики. Однако многое из того, что вдохнул в них Пифагор, осталось жить и оказало огромное влияние на науку. Сейчас очень трудно отделить вклад самого Пифагора от достижений его последователей. В особенности это относится к астрономии, в которой было выдвинуто несколько принципиально новых идей. О них можно судить по дошедшим до нас скудным сведениям о представлениях поздних пифагорейцев и учениями философов, испытавших влияние идей Пифагора.


    Аристотель и первая научная картина мира

    Аристотель родился в македонском городе Стагира в семье придворного лекаря. Семнадцатилетниим юношей попадает он в Афины, где становится учеником Академии, основанной философом Платоном.

    Сначала система Платона увлекала Аристотеля, но постепенно он пришел к выводу, что взгляды учителя уводят от истины. И тогда Аристотель ушел из Академии, бросив знаменитую фразу: ”Платон мне друг, но истина дороже”. Император Филипп Македонский приглашает Аристотеля стать воспитателем наследника престола. Философ соглашается и три года нетлучно находится возле будущего основателя великой империи Александра Македонского. В шестнадцать лет его ученик возглавил войско отца и, разбив фиванцев в своей первой битве при Херонее, отправился в походы.

    Снова Аристотель переезжает в Афины, и в одном из районов, под названием Ликей, открывает школу. Он много пишет. Его сочинения настолько разнообразны, что трудно представить себе Аристотеля одиноким мыслителем. Скорее всего, в эти годы он выступал как глава большой школы, где ученики работали под его руководством, подобно тому как сегодня аспиранты разрабатывают темы, которые предлагают им руководители.

    Много внимания уделял греческий философ вопросам строения мира. Аристотель был убежден, что в центре Вселенной, безусловно, находится Земля.

    Аристотель пытался все объяснить причинами, которые близки здравому смыслу наблюдателя. Так, наблюдая Луну, он заметил, что в различных фазах она в точности соответствует тому виду, который принимал бы шар, с одной стороны освещаемый Солнцем. Столь же строго и логично было его доказательство шарообразности Земли. Обсудив все возможные причины затмения Луны, аристотель приходит в выводу, что тень на ее поверхности может принадлежать только Земле. А поскольку тень кругла, то и тело, отбрасывающее её, должно иметь такую же форму. Но Аристотель им не ограничивается. “Почему, - спрашивает он, - когда мы перемещаемся к северу или к югу, созвездия меняют свои положения относительно горизонта?” И тут же отвечает: “Потому, что Земля обладает кривизной ”. Действительно, будь Земля плоской, где бы ни находился наблюдатель, у него над головой сияли бы одни и теже созвездия. Совсем другое дело – на круглой Земле. Здесь у каждого наблюдателя свой горизонт, свой горизонт, своё небо… Однако, признавая шарообразность Земли, Аристотель категорически высказывался против возможности ее обращения вокруг Солнца. “Будь так, - рассуждал он, - нам казалось бы что звезды не находятся неподвижно на небесной сфере, а описывают кружки…” Это было серьезное возражение, пожалуй, самое серьезное, которое удалось устранить лишь много-много веков спустя, в XIX столетии.

    Об Аристотеле написано очень много. Авторитет этого философа невероятно высок. И это вполне заслужено. Потому что, несмотря на довольно многочисленные ошибки и заблуждения, в своих сочинениях Аристотель собрас все, чего добился разум за период античной цивилизации. Его сочинения – настоящая энциклопедия современной ему науки.

    По свидетельству современников, великий философ отличался неважным характером. Портрет, дошедший до нас, представляет нам малорослого, сухощавого человека с вечно язвительной усмешкой на губах.

    Говорил он кортаво.

    В отношениях с людьми был холоден и надменен.

    Но вступать с ним в спор решались немногие. Остроумная, злая и насмешливая речь Аристотеля разила наповал. Он разбивал возводимые против него доводы ловко, логично и жестоко, что, конечно, не прибавляло ему сторонников среди побежденных.

    После смерти Александра Македонского обиженные почувствовали, наконец, реальную возможность расквитаться с философом и обвинили его в безбожии. Судьба Аристотеля была предрешена. Не дожидаясь приговора, Аристотель бежит из Афин. “Чтобы избывить афинян от нового преступления против философии”, - говорит он, намекая на сходжную судьбу Сократа, получившего по приговору чашу с ядовитым соком цикуты.

    После отъезда из Афин в Малую Азию Аристотель скоро умирает, отравивщись во время трапезы. Так говорит легенда.

    Согласно преданию, Аристотель завещал свои рукописи одному из учеников по имени Феофраст.

    По смерти философа за его трудами начинается настоящая охота. В те годы книги сами по себе были драгоценностью. Книги же Аристотеля ценились дороже золота. Они переходили из рук в руки. Их прятали в погреба. Замуровывали в подвалы, чтобы сохранить от жадности пергамских царей. Сырость портила их страницы. Уже при римском владычестве сочинения Аристотеля в качестве военной добычи попадают в Рим. Здесь их продают любителям – богачам. Кое-кто старается восстановить пострадавшие места рукописей, снабдить их своими добавлениями, от чего текст, конечно, не становится лучше.

    Почему жетак ценились труды Аристотеля? Ведь в книгах других греческих философов встречались мысли более оригинальные. На этот вопрос отвечает английский философ и физик Джон Бернал. Вот что он пишет: ”Их(древнегреческих мыслителей) никто не мог понять, кроме очень хорошо подготовленных и искушенных читателей. А труды Аристотеля, при всей их громоздкости, не требовали (или казалось, что не требовали) для их понимания ничего, кроме здравого смысла…Для проверки его наблюдений не было необходимости в опытах или приборах, не нужны были и трудные математические вычисления или мистическая интуиция для понимания какого бы то ни было внутреннего смысла…Аристотель объяснял, что мир такой, каким все его знают, именно такой, каким они его знают”.

    Пройдет время, и авторитет Аристотеля станет безоговорочным. Если на диспуте один философ, подтверждая свои доводы, сошлется на его труды, это будет значить, что доводы, безусловно, верны. И тогда второй спорщик должен найти в сочинениях того же Аристотеля другую цитату, с помощью которой можно опровергнуть первую.…Лишь Аристотель против Аристотеля. Дркгие доводы против цитат были бессильны.Такой метод спора называется догматическим, и в нем, конечно, нет ни грамма пользы или истины….Но должно было пройти много веков, прежде чем люди поняли это и поднялись на борьбу с мертвой схоластикой и догматизмом. Эта борьба возродила науки, возродила искусство и дала название эпохи – Возрождение.

    Первый гелиоцентрист

    В древности вопрос о том, движется ли Земля вокруг Солнца, был попросту богохульным. Как знаменитые ученые, так и простые люди, у которых картина неба не вызывала особых размышлений, были искренне убеждены, что Земля неподвижна и представляет собой центр Вселенной. Тем не менее, современные историки могут назвать по меньшей мере одного ученого древности, который усомнился в общепринятом и попытался разработать теорию, согласно которой Земля движется вокруг Солнца.

    Жизнь Аристарха Самосского (310 – 250 гг. до н.э.) была тесно связана с Александрийской библиотекой. Сведения о нем весьма скудны, а из творческого наследия осталась только книга «О размерах Солнца и Луны и расстояниях до них», написанная в 265 г. до н.э. Лишь упоминания о нем других ученых Александрийской школы, а позднее и римлян, проливают некоторый свет на его «богохульные» научные изыскания.

    Аристарх задался вопросом о том, какого расстояние от Земли до небесных тел, и каковы их размеры. До него на этот вопрос пытались ответить пифагорейцы, но они исходили из произвольных предложений. Так, Филолай считал, что расстояния между планетами и Землей нарастают в геометрической прогрессии и каждая следующая планета в три раза дальше от Земли, чем предыдущая.

    Аристарх пошел своим путем, совершенно правильным точки зрения современной науки. Он внимательно следил за Луной и сменой ее фаз. В момент наступления фазы первой четверти он измерил угол между Луной, Землей и Солнцем (угол ЛЗС на рис.). Если это сделать достаточно точно, то в задаче останутся только вычисления. В этот момент Земля, Луна и Солнце образуют прямоугольный треугольник, а, как известно из геометрии, сумма углов в нем составляет 180 градусов. В таком случае второй острый угол Земля – Солнце – Луна (угол ЗСЛ) получается равным

    90˚ - Ð ЛЗС = Ð ЗСЛ


    Определение расстояния от Земли до Луны и Солнца методом Аристарха.

    Аристарх из своих измерений и вычислений получил, что этот угол равен 3º (в действительности его значение 10’) и что Солнце в 19 раз дальше от Земли, чем Луна (в действительности в 400 раз). Здесь надо простить ученому значительную ошибку, ибо метод был совершенно правильным, но неточности при измерении угла оказались велики. Было трудно точно уловить момент первой четвер ти, да и сами измерительные инструменты древности были далеки от совершенства.

    Но это был лишь первый успех замечательного астронома Аристарха Самосского. Ему выпало наблюдать полное солнечное затмение, когда диск Луны закрыл диск Солнца, т. е. видимые размеры обоих тел на небе были одинаковы. Аристарх перерыл старые архивы, где нашел много дополнительных сведений о затмениях. Оказалось, что в некоторых случаях солнечные затмения были кольцевыми, т. е. вокруг диска Луны оставался небольшой светящийся ободок от Солнца (наличие полных и кольцевых затмений связано с тем, что орбита Луны вокруг Земли является эллипсом). Но коли видимые диски Солнца и Луны на небе практически одинаковы, рассуждал Аристарх, а Солнце в 19 раз дальше от Земли, чем Луна, то и диаметр его должен быть в 19 раз больше. А как соотносятся диаметры Солнца и Земли? По многим данным о лунных затмениях Аристарх установил, что лунный диаметр составляет примерно одну треть земного и, следовательно, последний должен быть в 6,5 раз меньше солнечного. При этом объем Солнца должен в 300 раз превышать объем Земли. Все эти рассуждения выделяют Аристарха Самосского как выдающегося ученого своего времени.

    теля» Аристотеля. Но может ли огромное Солнце вращаться вокруг маленькой Земли? Или еще более огромная Все –

    ленная? И Аристотель сказал – нет, не может. Солнце есть центр Вселенной, вокруг него вращаются Земля и планеты, а вокруг Земли вращается только Луна.

    А почему на Земле день сменяется ночью? И на этот вопрос Аристарх дал правильный ответ – Земля не только обращается вокруг Солнца, но и вращается вокруг своей оси.

    И еще на один вопрос он ответил совершенно правильно. Приведем пример с движущимся поездом, когда близкие для пассажира внешние предметы пробегают мимо окна быстрее, чем далёкие. Земля движется вокруг Солнца, но почему звездный узор остается неизменным? Аристотель ответил: «Потому что звезды невообразимо далеки от маленькой Земли». Объем сферы неподвижных звезд во столько раз больше объема сферы с радиусом Земля – Солнце во сколько раз объем последней больше объема земного шара.

    Эта новая теория получила название гелиоцентрической, и суть ее состояла в том, что неподвижное Солнце помещалось в центр Вселенной и сфера звезд также считалась неподвижной. Архимед в своей книге «Псамит», отрывок из которой приведен в качестве эпиграфа к данному реферату, точно передал все, что предложил Аристарх, но сам предпочел снова «вернуть» Землю на ее старое место. Другие ученые полностью отвергли теорию Аристарха как неправдоподобную, а философ – идеалист Клеант попросту обвинил его в богохульстве. Идеи великого астронома не нашли в то время почвы для дальнейшего развития, они определили развитие науки примерно на полторы тысячи лет и возродились затем лишь в трудах польского ученого Николая Коперника.

    Древние греки считали, что поэзии, музыке, живописи и науке покровительствуют девять муз, которые были дочерями Мнемосины и Зевса. Так, муза Урания покровительствовала астрономии и изображалась с венцом из звезд и свитком в руках. Музой истории считалась Клио, музой танцев – Терпсихора, музой трагедий – Мельпомена и т. д. Музы были спутницами бога Аполлона, а их храм носил название музейон – дом муз. Такие храмы строились и в метрополии, и в колониях, но Александрийский музейон стал выдающейся академией наук и искусств древнего мира.

    Птолемей Лаг, будучи человеком настойчивым и желая оставить о себе память в истории, не только укрепил государство, но и превратил столицу в торговый центр всего Средиземноморья, а Музейон – в научный центр эпохи эллинизма. В огромном здании находились библиотека, высшее училище, астрономическая обсерватория, медицинско – анатомическая школа и еще ряд научных подразделений. Музейон был государственным учреждением, и его расходы обеспечи –

    вались соответствующей статьей бюджета. Птолемей, как в свое время Ашшурбанипал в Вавилоне, разослал писарей по всей стране для сбора культурных ценностей. Кроме того, каждый корабль, заходящий в порт Александрии, обязан был передавать в библиотеку имеющиеся на борту литературные произведения. Ученые из других стран считали для себя честью работать в научных учреждениях Музейон и оставлять здесь свои труды. На продолжении четырех веков в Александрии трудились астрономы Аристарх Самосский и Гиппарх, физик и инженер Герон, математики Евклид и Архимед, врач Герофил, астроном и географ Клавдий Птолемей и Эратосфен, который с одинаковым успехом разбирался в математике, географии, астрономии, и философии.

    Но последний был уже скорее исключением, поскольку важной особенностью эллинской эпохи стала «дифференциация» научной деятельности. Здесь любопытно заметить, что подобное выделение отдельных наук, а в астрономии и специализация по отдельным направлениям, произошло в Древнем Китае значительно раньше.

    Другой особенностью эллинской науки было то, что она снова обратилась к природе, т.е. стала сама «добывать» факты. Энциклопедисты Древней Эллады опирались на сведения, полученные еще египтянами и вавилонянами, а поэтому занимались лишь поиском причин, вызывающих те или иные явления. Науке Демокрита, Анаксагора, Платона и Аристотеля в еще большей степени был присущ умозрительный характер, хотя их теории можно рассматривать как первые серьезные попытки человечества понять устройство природы и всей Вселенной. Александрийские астрономы внимательно следили за движением Луны, планет, Солнца и звезд. Сложность планетных движений и богатство звездного мира заставляли их искать отправные положения, от которых можно было бы начинать планомерные исследования.


    «Phaenomena» Евклида и основные элементы небесной сферы


    Как уже упоминалось выше, александрийские астрономы попытались определить «отправные» точки для дальнейших систематических исследований. В этом отношении особая заслуга принадлежит математику Евклиду (III в. до н. э.), который в своей книге «Phaenomena» впервые ввел в астрономию понятия, до тех пор в ней не использовавшиеся. Так, он дал определения горизонта – большой окружности, являющейся пересечение плоскости, перпендикулярной к линии отвеса в точке наблюдений, с небесной сферой, а также небесного экватора – окружности, получающейся при пересечении с этой сферой плоскости земного экватора.

    Кроме того, он определил зенит – точку небесной сферы над головой наблюдателя («зенит» – арабское слово) – и точку, противоположную точке зенита, - надир.

    И еще про одну окружность говорил Евклид. Это небес –

    ный меридиан - большая окружность, проходящая через Полюс мира и зенит. Она образуется при пересечении с небесной сферой плоскости, проходящей через ось мира (ось вращения) и отвесную линию (т. е. плоскости, перпендикулярной плоскости земного экватора). Относи –

    тельно значения меридиана Евклид говорил, что, когда Солнце пересекает меридиан, в данном месте наступает полдень и тени предметов оказываются самыми короткими. К востоку от данного места полдень на земном шаре уже прошел, а к западу еще не наступил. Как мы помним, принцип измерения тени гномона на Земле в течение многих столетий лежал в основе конструкций солнечных часов.


    Самая яркая “звезда” александрийского неба.

    Ранее мы уже познакомились с результатами деятельности многих астрономов, как известных, так и тех,

    имена которых канули в лету. Еще за тридцать столетий до новой эры гелиопольские астрономы в Египте с поразительной точностью установили продолжительность года. Кудрявобородые жрецы – астрономы, наблюдавшие небо с вершин вавилонских зиккуратов, смогли начертить путь Солнца среди созвездий – эклиптику, а также небесные пути Луны и звезд. В далеком и загадочном Китае с высокой точностью измерили наклон эклиптики к небесному экватору.

    Древнегреческие филосовы посеяли зерна сомнения относительно божественного происхождения мира. При Аристархе, Евклиде и Эратосфене астрономия, которая до того отдавала большую часть астрологии, начала систематизировать свои исследования, встав на твердую почву истинного познания.

    И все же то, что сделал о области астрономии Гиппарх, значительно превосходит достижения как его предшественников, так и ученых более позднего времени. С полным основанием Гиппарха называют отцом научной астрономии. Он был чрезвычайно пунктуален в своих исследованиях, многократно проверяя выводы новыми наблюдениями и стремясь к открытию сути явлений, происходящих во Вселенной.

    История науки не знает, где и когда родился Гиппарх; звестно лишь, что наиболее плодотворный период его жизни приходится на время между 160 и 125 гг. до н. э.

    Большую часть своих исследований он провел на Александрийской обсерватории, а также на его собственной обсерватории, построенной на острове Самос.

    Еще до Гиппархатеории небесных сфер Евдокса и Аристотеля подверглись переосмыслению, в частности, великим александрийским математиком Аполлонием Пергским (III в. до н. э.), но Земля по-прежнему оставалась в центре орбит всех небесных тел.

    Гиппарх продолжил начатую Апполонием разработку теории круговых орбит, но внес в нее свои существенные дополнения, основанные на многолетних наблюдениях. Ранее Калипп, ученик Евдокса, обнаружил, что времена года имеют неодинаковую продолжительность. Гиппарх проверил это утверждение и уточнил, что астрономическая весна длится 94 и ½ сут, лето - 94 и ½ сут, осень – 88 суток и, наконец, зима продолжается 90 суток. Таким образом, интервал времени между весенним и осенним равноденствиями (включающий лето) равен 187 суток, а интервал от осеннего равноденствия до весеннего (включающий зиму) равен 88 + 90 =178 суток. Следовательно, Солнце движется по эклиптике неравномерно – летом медленнее, а зимой быстрее. Возможно и другое обьяснение причины различия, если предположить, что орбита не круг, а “вытянутая” замкнутая кривая (Апполоний Пергский назвал ее элипсом). Однако принять неравномерность движения Солнца и отличие орбиты от круговой – это означало перевернуть вверх ногами все представления, устоявшиеся еще с времен Платона. Поэтому Гиппарх ввел систему эксцентрических окружностей, предположив, что Солнце обращается вокруг Земли по круговой орбите, но сама Земля не находится в ее центре. Неравномерность в таком случае лишь кажущачся, ибо если Солнце находится ближе, то возникает впечатление более быстрого его движения, и наоборот.

    Однако, для Гиппарха остались загадкой прямые и попятные двидения планет, т.е. происхождение петель, которые планеты описывали на небе. Изменения видимого блеска планет (особенно для Марса и Венеры) свидетельствовали, что и они движутся по эксцентртрическим орбитам, то приближаясь к Земле, то удаляясь от нее и соответственно этому меняя блеск. Но в чем причина прямы и попятных движений?Гиппарх пришел к выводу, что размещение Земли в стороне от центра орбит планет недостаточно для обьяснения этой загадки. Спустя три столетя последний из великих александрийцев Клавдий Птоломей отметил, что Гиппарх отказался от поисков этом направлении и ограничился лишь систематизацией собственных наблюдений и наблюдений своих предшественников. Любопытно, что во времена Гиппарха в астрономии уже существовало понятие эпицикла, введение которого приписывают Аполлонию Пергскому. Но так или иначе, Гиппарх не стал заниматься теорией движения планет.

    Зато он успешно модифицировал метод Аристарха, позволяющий определить расстояние до Луны и Солнца. Пространственное расположение Солнца, Земли и Луны во время лунного затмения, когда проводились наблюдения.

    Гиппарх прославился также своими работами в области исследования звезд. Он, как и его предшественники, считал, что сфера неподвижных звезд реально существует,т.е. расположенные на ней объекты находятся на одинаковом расстоянии от Земли. Но почему тогда одни из них ярче других? Потому, считал Гиппарх, что их истинные размеры неодинаковы – чем больше звезда, тем она ярче. Он разделил диапозон блеска на шесть величин, от первой – для самых ярких звезд до шестой – для самых слабых, еще видимых невооруженным глазом (есстественно, телескопов тогда не было). В современной шкале звездных величин различие в одну величину соответствует различию в интенсивности излучения в 2,5 раза.

    В 134 году до н.э.в созвездии Скорпиона засияла новая звезда (теперь установлено, что новые звезды представляют собой двойные системы, в которых происходит взрыв вещества на поверхности одного из компонентов, сопровождаемый быстрым увеличением блеака объекта, с последующим затуханием).Ранее на этом месте ничего не было, и поэтому Гиппарх пришел к выводу о необхлдимости создания точного звезного каталога. С необычайной тщательностью великий астроном измерил эклиптические координаты около 1000 звезд, а также оценил их величины по своей шкале.

    Занимаясь этой работой, он решил проверить и мнение о том, что звезды неподвижны. Точнее говоря, это должны были сделать потомки.Гиппарх составил список звезд, расположенных на одной прямой линии, в надежде, что следующие поколения астрономов проверят, останется ли эта линия прямой.

    Занимаясь составление каталога, Гиппарх сделал замечательное открытие. Он сравнил свои результаты с координатами ряда звезд, измеренными до него Аристилом и Тимохарисом (современники Аристарха Самосского), и обнаружил, что эклиптические долготы объектов за 150 лет увеличились примерно на 2º. При этом эклиптические широты не изменились. Стало ясно, что причина не в собственных движениях звезд, иначе изменились бы обе координаты, а в перемещении точки весеннего равноденствия, от которой отсчитывается эклиптическа долгота, причем в направлении, противоположном движению Солнца по эклиптике. Как известно, точка весеннего равноденствия – это место пересечения эклиптики с небесным экватором. Поскольку эклиптическая широта не меняется со временем, Гиппарх сделал вывод, что причина смещения этой точки состоит в движении экватора.

    Таким образом,мы вправе удивиться необычайной логичности и строгости в научных исследованиях Гиппарха, а также их высокой точности. Французкий ученый Деламбр, известный исследователь древней астрономии, так охарактеризовал его деятельность:”Когда окинешь взглядом все открытия и усовершенствования Гиппарха, поразмышлишь над числом его трудов и множеством приведенных там вычислений, волей-неволей отнесешь его к самым выдающимся людям древности и, более того, назовешь самым великим среди них. Все достигнутое им относится к области науки, где требуется геометрические познания в сочетании с пониманием сущности явлений, которые поддаются наблюдениям лишь при условии тщательного изготовления инструментов…”


    Календарь и звезды

    В древней Греции, как и в странах Востока, в качестве религиозного и гражданского использовался лунно – солнечный календарь. В нем начало каждого календарного месяца должно было располагаться как можно ближе к новолунию, а средняя продолжительность календарного года – по возможности соответствовать промежутку времени между весенними равноденствиями (“тропический год”, как его сейчас называют). При этом месяцы по 30 и 29 дней чередовались. Но 12 лунных месяцев примерно на треть месяца короче года. Поэтому, чтобы выполнить второе требование, время от времени приходилось прибегать к интеркаляциям – добавлять в отдельные годы дополнительный, тринадцатый, месяц.

    Вставки делались нерегулярно правительством каждого полиса – города-государства. Для этого назначались специальные лица, которые следилиза величиной отставания календарного года от солнечного. В разделенной на мелкие государства Греции календари имели местное значение – одних названий месяцев в греческом мире существовало около 400. Математик и музыковед Аристоксен (354-300 до н.э.) писал о календарном беспорядке:”Десятый день месяца у коринфян – это пятый день у афиняни восьмой у кого-нибудь еще”

    Простой и точный, 19-летний цикл, использовавшийся еще в Вавилоне, предложил в 433 г. до н.э. афинский астроном Метон. Этот цикл предусматривал вставку семи дополнительных месяцев за 19 лет;его ошибка не превышала двух часов за один цикл.

    Земледельцы, связанные с сезонными работами, издревле пользовались еще и звездным календарем, который не зависел от сложных движений Солнца и Луны. Гесиод в поеме “Труды и дни”, указывая своему брату Персу время проведения сельскохозяйственных работ, отмечает их не по лунно-солнечному календарю, а по звездам:

    Лишь на востоке начнут восходить

    Атлантиды Плеяды,

    Жать поспешай, а начнут

    Заходить-за сев принимайся…

    Вот высоко средь неба уж Сириус

    Встал с Орионом,

    Уж начинает Заря розоперстая

    Видеть Артура,

    Режь, о Перс, и домой уноси

    Виноградные гроздья…

    Таким образом, хорошее знание звездного неба, которым в современном мире мало кто может похвастаться, древним грекам было необходимо и, очевидно, широко распространено. По-видимому, этой науке детей учили в семьях с раннего возраста. Лунно-солнечный календарь использовался и в Риме. Но здесь царил еще больший “календарный произвол”. Длина и начало года зависели от понтификов (от лат. Pontifices), римских жрецов, которые нередко пользовались своим правом в корыстных целях. Такое положение не могло удовлетворить огромную империю, в которую стремительно превращалось Римское государство. В 46 г. до н.э. Юлий Цезарь (100-44 до н.э.), исполнявший обязанности не только главы государства, но и верховного жреца, провел календарную реформу. Новый календарь по его поручению разработал александрийский математик и астроном Созиген, по происхождению грек. За основу он взял египедский, чисто солнечный, календарь. Отказ от учета лунных фаз позволил сделать календарь достаточно простым и точным. Этот календарь, названный юлианнским, использовался в христианском мире до введения в католических странах в XVI веке уточненного григорианского календаря.

    Летоисчисление по юлианскому календарю началось в 45 году до н.э. На 1 января перенесли начало года (раньше первым месяцем был март). В благодарность за введение календаря сенат постановил переименовать месяц квинтилис (пятый), в котором родился Цезарь, в юлиус – наш июль. В 8 году до н.э. честь следующего императора, Октивиана Августа, месяц секстилис(шестой), был переименован в август.Когда Тиберию, третьему принцепсу (императору), сенаторы предложили назватьего именем месяц септембр (седьмой), он будто бы отказался, ответив:”А что будет делать тринадцатый принцепс?”

    Новый календарь оказался чисто гражданским, религиозные праздники в силу традиции по-прежнему справлялисьв соответствии с фазами Луны. И в настоящее время праздник Пасхи согласовывается с лунным календарем, причем для расчета его даты используется цикл, предложенный еще Метоном.


    Заключение


    В далеком средневековье Бернард Шартрский говорил ученикам золотые слова:”Мы подобно карликам, усевшимся на плечах великанов; мы видим больше и дальше, чем они, не потому, что обладаем лучшим зрением, и не потому, что мы выше их, но потому, что они нас подняли и увеличили наш рост своим величием. Астрономы любых эпох всегда опирались на плечи предшествующих великанов.

    Античная астрономия занимает в истории науки особое место. Именно в древней Греции были заложены основы современного научного мышления. За семь с половиной столетий от Фалеса и Анаксимандра, сделавших первые шаги в осмыслении Вселенной, до Клавдия Птолемея, создавшего математическую теорию движения светил, античные ученые прошли огромный путь, на котором у них не было предшественников. Астрономы античности использовали данные, полученные задолго до них в Вавилоне. Однако для их обработки они создали совершенно новые математические методы, которые были взяты на вооружение средневековыми арабскими, а позднее и европейскими астрономами.

    В 1922 Международный Астрономический Съезд утвердил 88 международных названий созвездий, тем самым увековечил память о древнегреческих мифах, в честь которых были названы созвездия: Персей, Андромеда, Геркулес и т.д. (около 50-ти созвездий).Значение древнегреческой науки подчеркивают слова: планета, комета, галактика и само слово Астрономия.


    Список использованной литературы

    1. “Энциклопедия для детей”. Астрономия. (М. Аксенова, В. Цветков, А. Засов, 1997)

    2. “Звездочеты древности”. (Н. Николов, В. Харалампиев, 1991)

    3. “Открытие Вселенной-прошлое, настоящее, будущее”. (А. Потупа, 1991)

    4. “Горизонты Ойкумены”. (Ю. Гладкий, Ал. Григорьев, В. Ягья, 1990)

    5. Астрономия, 11 класс. (Е. Левитан, 1994)


    План защиты реферата


    Другие материалы

      Всплески практически одновременно, а для независимых текстов точки всплесков графиков никак не коррелируют. Это позволяет предложить новую методику датирования древних событий (она не универсальна и рамки ее применимости были указаны). Пусть Y - исторический текст, описывающий неизвестные нам...

      ... "ушу", давшая начало одноименной лечебной гимнастике, а также искусству самообороны "кунг-фу". Своеобразность духовной культуры Древнего Китая в значительной мере обусловлена феноменом, известным в мире как "китайские церемонии". Эти строго фиксированные стереотипы...

      Значение для истории древней китайской астрономии имеют надписи на древней бронзе. Синдзо в своих исследованиях использовал астрономические даты 180 текстов на бронзе. 2. Насколько можно выяснить из проделанных уже работ, в развитии древнекитайской астрономии, начиная со времен, теряющихся во мраке...


      ... – изо- бретают цветные пасты, которыми покрывают крупный бисер или делают его из цветных смальт. Из этого бисера на протяжении всей истории Древнего Египта изготовляли много различных украшений. Периоду Среднего царства принадлежат первые математические и медицин- ские тексты (некоторые из них...


      Что выполнение астрономических наблюдений составляло лишь одну необходимую грань той сложной, комплексной функции, которую выполняло поселение древних ариев среди просторной долины в глубине великой Урало-Казахстанской степи. В чем заключалась эта функция? Чтобы убедительно ответить на этот вопрос...

      Кампаний в Азии, в ходе которых он создает Египетское мировое государство, включавшее Египет, Нубию, Куш, Ливию, регионы Передней Азии (Сирию, Палестину, Финикию), за что фараона принято считать «Наполеоном Древнего мира». 1468 до н. э. Битва при Мегиддо (Мегиддоне) в Палестине: Тутмос III во главе...


      Печени, сердца, сосудов. Однако знания по анатомии и физиологии были незначительные. РАЗВИТИЕ ВЕТЕРИНАРИИ В ДРЕВНЕЙ ГРЕЦИИ С переходом от первобытно-общинного строя к рабовладельческому в Древней Греции образовался ряд мелких рабовладельческих государств (VI-IV вв. до н.э.). Высочайший расцвет...


    Аристарх (около 310-250 гг. - III в. до н. э.) родился на острове Самос. Он был учеником физика Стратона из Лампсака. Его учитель принадлежал к школе Аристотеля и в конце жизни даже руководил Ликеем. Он был одним из основателей знаменитой Александрийской библиотеки и Мусейона - главного научного центра поздней античности. По-видимому, здесь, среди первого поколения учёных Александрии, учился и работал Аристарх.

    Всё это, однако, не объясняет личности Аристарха, которая кажется совершенно выпадающей из своей эпохи. До него теории неба строились чисто умозрительно, на основе философских аргументов. Иначе и быть не могло, поскольку небо рассматривалось как мир идеального, вечного, божественного. Аристарх же попытался определить расстояния до небесных тел с помощью наблюдений. Когда у него это получилось, он сделал второй шаг, к которому не были готовы ни его современники, ни учёные много веков позднее.

    Как Аристарх решил первую задачу, известно точно. Единственная сохранившаяся его книга «О размерах Солнца и Луны и расстояниях до них» как раз посвящена этой проблеме. Сначала Аристарх определил, во сколько раз Солнце дальше Луны. Для этого он измерил угол между Луной, находившейся в фазе четверти, и Солнцем (это можно сделать при заходе или восходе Солнца, когда Луна иногда видна одновременно с ним). Если, по словам Аристарха, «Луна кажется нам рассечённой пополам», угол, имеющий Луну своей вершиной, прямой. Аристарх измерил угол между Луной и Солнцем, в вершине которого находилась Земля. Он получился у него равным 87° (в действительности 89° 5 2"). В прямоугольном треугольнике с таким углом гипотенуза (расстояние от Земли до Солнца) в 19 раз длиннее катета (расстояния до Луны). Для знающих тригонометрию отметим, что 1/19 к cos 87°. На этом выводе - Солнце в 19 раз дальше Луны - Аристарх и остановился.

    На самом деле Солнце дальше в 400 раз, однако с инструментами того времени найти верное значение было невозможно. Аристарх знал, что видимые диски Солнца и Луны примерно одинаковы. Он сам наблюдал солнечное затмение, когда диск Луны полностью закрыл диск Солнца. Но если видимые диски равны, а расстояние до Солнца в 19 раз больше, чем расстояние до Луны, то диаметр Солнца в 19 раз больше диаметра Луны. Теперь осталось главное: сравнить Солнце и Луну с самой Землёй. Вершиной научной смелости тогда была идея, что Солнце очень велико, возможно даже почти так же велико, как вся Греция. Наблюдая лунные затмения, когда Луна проходит через тень Земли, Аристарх установил, что диаметр Луны в два раза меньше земной тени. С помощью довольно хитроумных рассуждений он доказал, что Луна меньше Земли в 3 раза. Но Солнце больше Луны в 19 раз, а значит, её диаметр в 6 с лишним раз больше земного.(в действительности в 109 раз). Главным в работе Аристарха был не результат, а сам факт выполнения, доказавший, что недостижимый мир небесных тел может быть познан с помощью измерений и расчётов.

    По-видимому, всё это и подтолкнуло Аристарха к его великому открытию. Его идея дошла до нас только в пересказе Архимеда. Аристарх догадался, что большое Солнце не может обращаться вокруг маленькой Земли. Вокруг Земли вращается только Луна. Солнце есть центр Вселенной. Вокруг него обращаются и планеты. Эта теория получила название гелиоцентрической. Смену дня и ночи на Земле Аристарх объяснял тем, что Земля вращается вокруг своей оси. Его гелиоцентрическая модель объясняла многое, например заметное изменение блеска Марса. Судя по некоторым данным, Аристарх догадался и о том, что его теория естественно объясняет и петлеобразное движение планет, вызванное обращением Земли вокруг Солнца.
    Свои теории Аристарх продумал хорошо. Он учёл, в частности, тот факт, что наблюдатель на движущейся Земле должен заметить изменение положений звёзд - параллактическое смещение. Аристарх объяснял кажущуюся неподвижность звёзд тем, что они очень далеки от Земли, и её орбита бесконечно мала по сравнению с этим расстоянием. Теория Аристарха не могла быть принята его современниками. Слишком многое нужно было менять. Невозможно было поверить, что наша опора не покоится, а вращается и движется и осознать все последствия того факта, что Земля тоже небесное тело, подобное Венере или Марсу. Ведь в этом случае рухнула бы тысячелетняя идея Неба, величественно взирающего на земной мир.
    Современники Аристарха отвергли гелиоцентризм. Его обвинили в богохульстве и изгнали из Александрии. Через несколько веков Клавдий Птолемей найдёт убедительные теоретические доводы, опровергающие движение Земли. Потребуется смена эпох, чтобы гелиоцентризм смог войти в сознание людей.

    Аристарх сравнивает расстояние до Солнца и Луны

    Платон утверждал, что Солнце ровно вдвое дальше от Земли, чем Луна. «Посмотрим, так ли это», - подумал Аристарх и начертил треугольник.

    Наблюдатель смотрит с Земли Т на Солнце и Луну. Луна в фазе первой четверти. Это бывает, когда угол TLS прямой. По Платону, TS = 2TL , значит, угол TLS = 60°. Но такого не может быть, ведь во время фазы первой четверти Луна отделена от Солнца примерно на 90°. А если померить точно? Аристарх померил TLS в момент первой четверти и получил угол в 87°.

    ГИППАРХ

    «Этот Гиппарх, который не может не заслужить достаточной похвалы... более чем кто-либо доказал родство человека со звёздами и то, что наши души являются частью неба... Он решился на дело, смелое даже для

    богов, - переписать для потомства звёзды и пересчитать светила... Он определил места и яркость многих звёзд, чтобы можно было разобрать, не исчезают ли они, не появляются ли вновь, не движутся ли они, меняются ли в яркости.

    Он оставил потомкам небо в наследство, если найдётся тот, кто примет это наследство» - так писал римский историк и естествоиспытатель Плиний Старший о величайшем астрономе Древней Греции.

    Годы рождения и смерти Гиппарха неизвестны. Известно только, что он родился в городе Никее, в Малой Азии.

    Большую часть жизни (1б0 - 125 гг. до н. э.) Гиппарх провёл на острове Родос в Эгейском море. Там он построил обсерваторию.

    Из трудов Гиппарха почти ничего не сохранилось. До нас дошло лишь одно его сочинение - «Комментарии к Арату и Евдоксу». Другие погибли вместе с Александрийской библиотекой. Она просуществовала более трёх столетий - с конца IV в. до н. э. и до

    47 г. до н. э., когда войска Юлия Цезаря взяли Александрию и разграбили библиотеку. В 391 г. н. э. толпа христианских фанатиков сожгла большинство рукописей, чудом уцелевших во время нашествия римлян. Полное уничтожение довершили арабы. Когда в

    641 г. войска халифа Омара взяли Александрию, он приказал сжечь все рукописи. Лишь случайно спрятанные или ранее переписанные манускрипты сохранились и позднее попали в Багдад.
    Гиппарх занимался систематическими наблюдениями небесных светил. Он первым ввёл географическую сетку координат из меридианов и параллелей, позволявшую определить широту и долготу места на Земле так же, как до того астрономы определяли звёздные координаты (склонение и прямое восхождение} на воображаемой небесной сфере.
    Многолетние наблюдения за движением дневного светила позволили Гиппарху проверить утверждения Евктемона (V в. до н. э.) и Каллиппа (IV в. до н. э.) о том, что астрономические времена года имеют неодинаковую продолжительность. Они начинаются в день и даже в момент наступления равноденствия или солнцестояния: весна - с весеннего равноденствия, лето - с летнего солнцестояния и т. д.
    Гиппарх обнаружил, что весна длится примерно 94,5 суток, лето -92,5 суток, осень - 88 суток и, наконец, зима продолжается приблизительно 90 суток. Отсюда следовало, что Солнце движется по эклиптике неравномерно - летом медленнее, а зимой быстрее. Это нужно было как-то согласовать с античными представлениями о совершенстве небесных движений: Солнце должно двигаться равномерно и по окружности.
    Гиппарх предположил, что Солнце обращается вокруг Земли равномерно и по окружности, но Земля смещена относительно её центра. Такую орбиту Гиппарх назвал эксцентриком, а величину смещения центров (в отношении к радиусу) - эксцентриситетом . Он нашёл, что для объяснения разной продолжительности времён года надо принять эксцентриситет равным 1/24. Точку орбиты, в которой Солнце находится ближе всего к Земле, Гиппарх назвал перигеем , а наиболее удалённую точку - апогеем . Линия, соединяющая перигей и апогей, была названа линией апсид (от греч. «апсидос» -«свод», «арка»).
    В 133 г. до н. э. в созвездии Скорпиона вспыхнула новая звезда. По сообщению Плиния, это событие побудило Гиппарха составить звёздный каталог, чтобы зафиксировать изменения в сфере «неизменных звёзд». Он определил координаты 850 звёзд относительно эклиптики - эклиптические широту и долготу. Одновременно Гиппарх оценивал и блеск звёзд с помощью введённого им понятия звёздной величины . Самым ярким звёздам он приписал 1-ю звёздную величину, а самым слабым, едва видным, - 6-ю.
    Сравнив свои результаты с координатами некоторых звёзд, измеренными Аристилом и Тимохарисом (современниками Аристарха Самосского), Гиппарх обнаружил, что эклиптические долготы увеличились одинаково, а широты не изменились. Из этого он сделал вывод, что дело не в движении самих звёзд, а в медленном смещении небесного экватора.
    Так Гиппарх открыл, что небесная сфера кроме суточного движения ещё очень медленно поворачивается вокруг полюса эклиптики относительно экватора (точный период 26 тыс. лет). Это явление он назвал прецессией (предварением равноденствий).


    Гиппарх установил, что плоскость лунной орбиты вокруг Земли наклонена к плоскости эклиптики под углом 5°. Поэтому у Луны изменяется не только эклиптическая широта, но и долгота. Лунная орбита пересекается с плоскостью эклиптики в двух точках - узлах. Затмения могут происходить, только если Луна находится в этих точках своей орбиты. Пронаблюдав в течение своей жизни несколько лунных затмений (они происходят в полнолуние), Гиппарх определил, что синодический месяц (время между двумя полнолуниями) длится 29 суток 12 ч 44 мин 2,5 с. Это значение всего на 0,5 с меньше истинного.
    Гиппарх впервые начал широко использовать древние наблюдения вавилонских астрономов. Это позволило ему очень точно определить длину года. В результате своих изысканий он научился предсказывать лунные и солнечные затмения с точностью до одного часа. Попутно он составил первую в истории тригонометрическую таблицу, в которой приводились значения хорд, соответствующие современным синусам.
    Гиппарх вторым после Аристарха сумел найти расстояние до Луны, оценив также расстояние до Солнца. Он знал, что во время солнечного затмения 129 г. до н. э. оно было полным в районе Геллеспонта (современные Дарданеллы). В Александрии Луна закрыла лишь 4/5 солнечного диаметра. Иначе говоря, видимое место Луны не совпадало в этих городах на 0,1°. Зная расстояние между городами, Гиппарх легко нашёл расстояние до Луны, используя метод, введённый ещё Фалесом. Он вычислил, что расстояние Земля - Луна составляет около 60 радиусов Земли (результат, очень близкий к действительному). Расстояние Земля - Солнце, по Гиппарху, равно 2 тыс. радиусов Земли.
    Гиппарх обнаружил, что наблюдаемые движения планет очень сложны и не описываются простыми геометрическими моделями. Здесь он впервые столкнулся с задачей, разрешить которую был не в силах. Только спустя три века «небесное наследство» великого астронома было принято Птолемеем, который смог построить систему мира, согласующуюся с наблюдателями.

    КЛАВДИЙ ПТОЛЕМЕЙ. СОЗДАТЕЛЬ ТЕОРИИ НЕБА

    «Пусть никто, глядя на несовершенство наших человеческих изобретений, не считает предложенные здесь гипотезы слишком искусственными. Мы не должны сравнивать человеческое с божественным... Небесные явления нельзя рассматривать с точки зрения того, что мы называем простым и сложным. Ведь у нас всё произвольно и переменно, а у небесных существ всё строго и неизменно».

    Этими словами последний из выдающихся греческих учёных Клавдий Птолемей завершает свой астрономический трактат. Они как бы подводят итог античной науки. В них слышны отзвуки её достижений и разочарований. Полтора тысячелетия - до Коперника - они будут звучать в стенах средневековых университетов и повторяться в трудах учёных.
    Клавдий Птолемей жил и работал в Александрии, расположенной в устье Нила. Город был основан Александром Македонским. В течение трёх веков здесь была столица государства, в котором правили цари из династии Птолемеев - преемников Александра. В 30 г. до н. э. Египет был завоёван Римом и стал частью Римской империи.
    В Александрии жили и работали многие выдающиеся учёные древности: математики Евклид, Эратосфен, Аполлоний Пергский, астрономы Аристилл и Тимохарис. В III в. до н. э. в городе была основана знаменитая Александрийская библиотека, где были собраны все основные научные и литературные сочинения той эпохи - около 700 тыс. папирусных свитков. Этой библиотекой постоянно пользовался и Клавдий Птолемей.
    Он жил в пригороде Александрии Канопе, целиком посвятив себя занятиям наукой. Астроном Птолемей не имеет никакого отношения к династии Птолемеев, он просто их тёзка. Точные годы его жизни неизвестны, но по косвенным данным можно установить, что он родился, вероятно, около 100 г. н. э. и умер около 165 г. Зато точно известны даты (и даже часы) его астрономических наблюдений, которые он вёл в течение 15 лет: со 127 по 141 год.
    Птолемей поставил перед собой трудную задачу: построить теорию видимого движения по небосводу Солнца, Луны и пяти известных тогда планет. Точность теории должна была позволить вычислять положения этих небесных светил относительно звёзд на много лет вперёд, предсказывать наступление солнечных и лунных затмений.
    Для этого нужно было составить основу для отсчёта положений планет - каталог положений неподвижных звёзд. В распоряжении Птолемея был такой каталог, составленный за два с половиной века до него его выдающимся предшественником -древнегреческим астрономом Гиппархом. В этом каталоге было около 850 звёзд.
    Птолемей соорудил специальные угломерные инструменты для наблюдений положений звёзд и планет: астролябию , армиллярную сферу , трикветр и некоторые другие. С их помощью он выполнил множество наблюдений и дополнил звёздный каталог Гиппарха, доведя число звёзд до 1022.
    Используя наблюдения своих предшественников (от астрономов Древнего Вавилона до Гиппарха), а также собственные наблюдения, Птолемей построил теорию движения Солнца, Луны и планет. В этой теории предполагалось, что все светила движутся вокруг Земли, которая является центром мироздания и имеет шарообразную форму. Чтобы объяснить сложный характер движения планет, Птолемею пришлось ввести комбинацию двух и более круговых движений. В его системе мира вокруг Земли по
    большой окружности - деференту (от лат. deferens - «несущий») - движется не сама планета, а центр некоей другой окружности, называемой эпициклом (от греч. «эпи» - «над», «киклос» -«круг»), а уже по нему обращается планета. В действительности движение по эпициклу является отражением реального движения Земли вокруг Солнца. Для более точного воспроизведения неравномерности движения планет на эпицикл насаживались ещё меньшие эпициклы.
    Птолемею удалось подобрать такие размеры и скорости вращения всех «колёс» своей Вселенной, что описание планетных движений достигло высокой точности. Эта работа потребовала огромной математической интуиции и громадного объёма вычислений.
    Он был не вполне удовлетворён своей теорией. Расстояние от Земли до Луны у него сильно (почти вдвое) менялось, что должно было привести к бросающимся в глаза изменениям угловых размеров светила; не были понятны и сильные колебания яркости Марса и т. п. Но лучшего ни он, ни тем более его последователи предложить не могли. Все эти проблемы представлялись Птолемею меньшим злом, чем «нелепое» допущение движения Земли.


    Все астрономические исследования Птолемея были им подытожены в капитальном труде, который он назвал «Мегалесинтаксис» (Большое математическое построение). Но переписчики этого труда заменили слово «большое» на «величайшее» (мэгисте), и арабские учёные стали называть его «Аль-Мэгисте», откуда и произошло его позднейшее название - «Альмагест ». Этот труд был написан около 150 г. н. э. В течение 1500 лет это сочинение Клавдия Птолемея служило основным учебником астрономии для всего научного мира. Оно было переведено с греческого языка на сирийский, среднеперсидский, арабский, санскрит, латынь, а в Новое время - почти на все европейские языки, включая русский.
    После создания «Альмагеста» Птолемей написал небольшое руководство по астрологии - «Тетрабиблос» (Четверокнижие), а затем второе по значению своё произведение - «Географию». В нём он дал описания всех известных тогда стран и координаты (широты и долготы) многих городов. «География» Птолемея также была переведена на многие языки и уже в эпоху книгопечатания выдержала более 40 изданий.
    Клавдий Птолемей написал также монографию по оптике и книгу по теории музыки («Гармония»). Ясно, что он был весьма разносторонним учёным.
    «Альмагест» и «Географию» относят к числу важнейших книг, созданных за всю историю науки.

    Армиллярная сфера.

    Через 500 лет после Аристотеля Клавдий Птолемей писал: «Существуют люди, которые утверждают, будто бы ничто не мешает допустить, что... Земля вращается вокруг своей оси, с запада на восток, делая один оборот в сутки... И правда, ничто не мешает для большей простоты, хоть этого и нет, допустить это, если принять в расчёт только видимые явления. Но эти люди не сознают... что Земля из-за своего вращения имела бы скорость, значительно большую тех, какие мы можем наблюдать...
    В результате все предметы, не опирающиеся на Землю, должны казаться совершающими такое же движение в обратном направлении; ни облака, ни другие летающие или парящие объекты никогда не будут видимы движущимися на восток, поскольку движение Земли к востоку будет всегда отбрасывать их... в обратном направлении».

    Выбирая между подвижной и неподвижной Землёй, Птолемей, исходя из физики Аристотеля, выбрал неподвижную. По этой же причине он, вероятно, принял и геоцентрическую систему мира.

    "Знаю, что я смертен, знаю, что дни мои сочтены; но, когда я в мыслях неустанно и жадно прослеживаю пути светил, тогда я не касаюсь ногами Земли: на пиру Зевса наслаждаюсь амброзией, пищей богов."

    (Клавдий Птолемей. «Альмагест».)

    3. Зарождение астрономии и календарей в Египте в связи с земледелием

    Развитие земледелия в Древнем Египте в совокупности с ИДЕАЛЬНЫМИ условиями для астрономических наблюдений – постоянно чистое небо, низкая географическая широта, позволяющая видеть не только северную, но и значительную часть южной половины звездной сферы – все это естественным образом привело к развитию астрономических наблюдений, а затем и календарей в Египте. Так зародилась НАУКА, основной двигатель человеческой цивилизации. Земледелие породило астрономию и тем самым дало первоначальный толчок развитию науки.

    Поясним подробнее нашу мысль.

    Земледельческая деятельность, в отличие от собирательства, охоты или скотоводства, имеет ГОДОВУЮ цикличность. Ровно через год (в среднем) действия земледельца повторяются. Это означает, что земледелие по самой своей сути привязано к годовому КАЛЕНДАРЮ. Вспомним, что у русских крестьян всегда бытовало множество КАЛЕНДАРНЫХ примет – в какой день начинать сеять, в какой – собирать урожай. В зависимости от погоды на тот или иной календарный день крестьяне ожидали теплое или холодное лето, дождливое или засушливое.

    Календарное разбиение года и календарные приметы крайне важны для земледельца. Ведь ему приходится постоянно принимать решения, зависящие не от сегодняшних, а от БУДУЩИХ погодных условий. Надо ЗАРАНЕЕ решить – сколько оставить семян, где, что и когда посадить, когда начать уборку. По сути, это задача статистического прогнозирования, решение которой немыслимо в отсутствие годового исчисления времени, то есть, без КАЛЕНДАРЯ. Поскольку без календаря невозможно накапливать знания, необходимые для создания сельскохозяйственных примет. Вряд ли надо долго доказывать, что успешная земледельческая деятельность без календаря невозможна.

    Заметим далее, что любой календарь имеет АСТРОНОМИЧЕСКУЮ основу. Календарный месяц, например, основан на наблюдениях за сменой фаз Луны. Календарный солнечный год – а именно он важнее всего для земледельца – первоначально основывался на наблюдениях за звездами . Впоследствии, с развитием астрономии, год стали исчислять на основе более сложных наблюдений за равноденствиями и солнцестояниями. Однако, в любом случае, все это – чисто АСТРОНОМИЧЕСКИЕ наблюдения.

    Важнейшим событием для египетского земледельца был ежегодный разлив Нила. Еще в глубокой древности египтянами было замечено, что существует связь между разливами Нила и картиной звездного неба. Эта связь казалось им таинственной и даже божественной . На самом деле, это была КАЛЕНДАРНАЯ связь, поскольку и разливы реки Нил и картина звездного неба, наблюдаемая в определенной точке Земли, определяются числами солнечного календаря. Считается, что именно эта загадочная для древнего человека связь, стремление ее постигнуть, и послужила первым толчком для развития астрономии и календарей в Древнем Египте. Египтяне «заметили, что когда Сириус восходил вместе с Солнцем, то следовало за сим непосредственно наводнение, и земледелец мог располагать по тому свою работу… старались они узнать, какая могла быть связь между Каникульным тем созвездием и разлитием реки» , с. 30. Так началась древняя астрономия, которая была первой наукой на Земле.

    От древнего начала египетского земледельческого года, связанного с ежегодными разливами Нила, происходит и начало старого русского церковного года 1 сентября старого стиля (14 сентября нового стиля). А также – начало учебного года 1 сентября. Сентябрьское начало года естественным образом определялось началом подготовки к посевной в Египте, то есть концом разлива Нила. Как только с полей уходила нильская вода, в Египте начинался посев. Вода начинала спадать в августе-сентябре, поэтому и древнеегипетский год начинался с 1 сентября. Это же начало года отражено и на египетских зодиаках, см. наши книги «Новая хронология Египта» и «Небесный календарь древних».

    Отметим, что именно в Египте, в египетской Александрии, был первоначально написан знаменитый Альмагест Птолемея, служивший вплоть до XVI века н. э. основным источником астрономических знаний во всем мире. Как показала полученная нами в 1993 году независимая датировка звездного каталога Альмагеста по собственным движениям звезд, см. [ХРОН3], он начал создаваться в промежутке от 600 до 1300 года н. э. То есть – на НЕСКОЛЬКО СТОЛЕТИЙ ПОЗЖЕ, чем думают историки. Эта датировка полностью согласуется и с другими независимыми астрономическими датировками памятников Древнего Египта, см. [ХРОН3], [НХЕ].

    В заключение отметим, что астрономия никогда не угасала в Египте. Когда в 1799 году наполеоновские войска вторглись в Египет, находившийся под властью мамелюков, европейцы обнаружили, что среди прочих традиционных искусств и ремесел Египта, свое прочное место занимает АСТРОНОМИЯ. На рис. 12 мы приводим рисунок из наполеоновского «Описания Египта», изображающий египетского астронома конца XVIII века. Показательно, что изображение астронома помещено в «Описании Египта» в одном ряду с изображениями земледельцев, плотников, пекарей, поэтов и т. п. , с. 686–741. Это говорит о том, что в средневековом мамелюкском Египте астрономия была достаточно распространенным занятием. На рис. 13 представлены изображения астрономических инструментов и чертежей, которые европейцы обнаружили в Египте конца XVIII века.

    Рис. 12. Египетский астроном конца XVIII века. Рисунок наполеоновских художников. Взято из , с. 719.

    Рис. 13. Астрономические инструменты и чертежи, которые бытовали в Египте в конце XVIII века. Рисунок наполеоновских художников. Взято из , с. 737.

    Данный текст является ознакомительным фрагментом. Из книги 100 великих загадок истории автора

    Из книги Когда? автора Шур Яков Исидорович

    Сколько угодно календарей… По звездам и Солнцу находили путь древние пастушеские племена. Когда наступала весна, кочевники-скотоводы угоняли свои стада на горные пастбища - здесь в это время вдосталь сочной травы. А начиналась осень, и пастухи вновь перекочевывали на

    Из книги Когда? автора Шур Яков Исидорович

    КАКИХ ТОЛЬКО НЕ БЫЛО КАЛЕНДАРЕЙ… Боги как люди Кто не слыхал о горе Олимп, «штаб-квартире» многочисленных богов Древней Греции. Они заведовали временами года и погодой, ниспосылали урожай или недород, командовали грозами, бурями, землетрясениями - всеми стихиями. Были

    Из книги Царь славян. автора

    10. Зарождение астрономии в эпоху Халдейского царства XI–XIII веков Библейский Сиф, сын Адама, родился в конце десятого века н. э Эпоху зарождения астрономии можно датировать и это - весьма интересная научная проблема. Основой такой датировки служит Альмагест Птолемея -

    Из книги Величайшие загадки истории автора Непомнящий Николай Николаевич

    МИСТЕРИЯ КАЛЕНДАРЕЙ МАЙЯ Трудно поверить, что индейцы майя составляли точнейшие календари на тысячелетия вперед. Современные ученые утверждают, что на составление календарей, соответствующих по своей точности тем, что создали майя, потребовалось бы 10 тысяч лет!Майя, как

    автора Монтескье Шарль Луи

    ГЛАВА III О странах с высокоразвитым земледелием Степень развития земледелия в стране зависит не от ее плодородия, а от ее свободы. Если мы мысленно разделим землю, то удивимся, так как увидим по большей части пустыни в наиболее плодородных областях и густое население там,

    Из книги Избранные произведения о духе законов автора Монтескье Шарль Луи

    ГЛАВА XII О международном праве у народов, не занимающихся земледелием Так как эти народы не занимают определенного пространства с точно обозначенными границами, то у них всегда будет много причин для раздоров. Они будут спорить из-за невозделанных земель, как у нас

    Из книги Избранные произведения о духе законов автора Монтескье Шарль Луи

    ГЛАВА XIII О гражданских законах у народов, не занимающихся земледелием Раздел земель - вот главная причина, увеличивающая объем гражданского свода законов народов. У народов, не имеющих этого раздела, гражданских законов очень мало. Учреждения этих народов скорее можно

    Из книги Избранные произведения о духе законов автора Монтескье Шарль Луи

    ГЛАВА XIV О политическом состоянии народов, не занимающихся земледелием Эти народы пользуются большой свободой, так как, не занимаясь возделыванием земли, они и не связаны с нею. Они ведут кочевой образ жизни, и если бы какой-нибудь из их вождей захотел лишить их свободы,

    Из книги Царь славян автора Носовский Глеб Владимирович

    10. ЗАРОЖДЕНИЕ АСТРОНОМИИ В ЭПОХУ ХАЛДЕЙСКОГО ЦАРСТВА XI–XIII ВЕКОВ. БИБЛЕЙСКИЙ СИФ, СЫН АДАМА, РОДИЛСЯ В КОНЦЕ ДЕСЯТОГО ВЕКА Н.Э Эпоху зарождения астрономии можно датировать, и это – весьма интересная научная проблема. Основой такой датировки служит Альмагест Птолемея –

    Из книги Народ майя автора Рус Альберто

    Корреляция календарей майя и христианского "Длинный счет" перестал использоваться за несколько веков до испанской конкисты, что затруднило возможность точно соотнести календарь майя с нашим. В самом деле, некоторые факты, упомянутые в "Сообщении" Ланды и в других

    Из книги Атлантида автора Зайдлер Людвик

    Из книги История под знаком вопроса автора Габович Евгений Яковлевич

    От календарей к технической хронологам Возвращаясь к статье А. А. Романовой о хронологии, отмечу, что в ней всему этому описанному выше развлекательному чтиву посвящены страницы 162–200 с заходом на завершающую статью страницу 201 и только последние полстранички уделены

    Из книги Предыстория под знаком вопроса (ЛП) автора Габович Евгений Яковлевич

    Часть 4. Предыстория современных календарей Часто о древних календарях или о счете времени вообще у разных народов сохранились самые отрывочные сведения, пару названий месяцев или дней недели. Иногда по косвенным данным восстанавливаются какие-то признаки древнего

    Из книги Миссия России. Национальная доктрина автора Вальцев Сергей Витальевич

    Зарождение человека – зарождение духовности Духовность – столь же древний феномен, как и сам человек. С начала своей эволюции человек обладал духовностью. Собственно, это очевидно, ведь духовность – отличительная характеристика человека. Есть духовность – есть

    Из книги Полное собрание сочинений. Том 3. Развитие капитализма в России автора Ленин Владимир Ильич

    VIII. «Соединение промысла с земледелием» Такова излюбленная народническая формула, при помощи которой думают решить вопрос о капитализме в России гг. В. В., Н. -он и Ко. «Капитализм» отделяет промышленность от земледелия; «народное производство» соединяет их в типичном и

    В греческой науке твердо установилось мнение (с различными, конечно, вариациями), что Земля подобна плоскому или выпуклому диску, окруженному океаном. От этой точки зрения многие греческие мыслители не отказались даже тогда, когда в эпоху Платона и Аристотеля, казалось, возобладали представления о шарообразности Земли. Увы, уже в те далекие времена прогрессивная идея пробивала себе дорогу с большим трудом, требовала от своих сторонников жертв, но, к счастью, тогда еще «не казался ересью талант», а «в аргументах не ходил сапог».

    Идея диска (барабана или даже цилиндра) была очень удобна для подтверждения широко распространенного убеждения о срединном положении Эллады. Она же была вполне приемлема для изображения суши, плавающей в океане.

    В пределах дискообразной (а позднее шарообразной) Земли выделялась ойкумена. Что по - древнегречески означает вся обитаемая земля, вселенная. Обозначение одним словом двух, казалось бы, разных понятий (для греков тогда они представлялись одно-порядковыми) глубоко симптоматично.

    В древности вопрос о том, движется ли Земля вокруг Солнца, был попросту богохульным. Как знаменитые ученые, так и простые люди, у которых картина неба не вызывала особых размышлений, были искренне убеждены, что Земля неподвижна и представляет собой центр Вселенной. Тем не менее, современные историки могут назвать, по меньшей мере, одного ученого древности, который усомнился в общепринятом и попытался разработать теорию, согласно которой Земля движется вокруг Солнца.

    Аристарх задался вопросом о том, какого расстояние от Земли до небесных тел, и каковы их размеры. Аристарх пошел своим путем, совершенно правильным точки зрения современной науки. Он внимательно следил за Луной и сменой ее фаз. В момент наступления фазы первой четверти он измерил угол между Луной, Землей и Солнцем. Если это сделать достаточно точно, то в задаче останутся только вычисления. В этот момент Земля, Луна и Солнце образуют прямоугольный треугольник, а, как известно из геометрии, сумма углов в нем составляет 180 градусов. В таком случае второй острый угол Земля - Солнце - Луна (угол ЗСЛ) получается равным.

    Возникновение геометрии

    С VII века до н. э. по I век н. э. геометрия как наука бурно развивалась в Древней Греции. В этот период происходило не только накопление различных геометрических сведений, но и отрабатывалась методика доказательств геометрических утверждений, а также делались первые попытки сформулировать основные первичные положения (аксиомы) геометрии, из которых чисто логическими рассуждениями выводится множество различных геометрических утверждений. Уровень развития геометрии в Древней Греции отражен в сочинении Евклида «Начала».

    В этой книге впервые была сделана попытка дать систематическое построение планиметрии на базе основных неопределяемых геометрических понятий и аксиом (постулатов).

    Особое место в истории математики занимает пятый постулат Евклида (аксиома о параллельных прямых). Долгое время математики безуспешно пытались вывести пятый постулат из остальных постулатов Евклида и лишь в середине XIX века благодаря исследованиям Н. И. Лобачевского, Б. Римана и Я. Бойяи стало ясно, что пятый постулат не может быть выведен из остальных, а система аксиом, предложенная Евклидом, не единственно возможная.

    «Начала» Евклида оказали огромное влияние на развитие математики. Эта книга на протяжении более чем двух тысяч лет была не только учебником по геометрии, но и служила отправным пунктом для очень многих математических исследований, в результате которых возникли новые самостоятельные разделы математики.

    «Астрономия древней Греции»

    План

    I. Вступление

    II. Астрономия древних греков

    1. На пути к истине, через познание

    2. Аристотель и геоцентрическая система мира

    3. Тот самый Пифагор

    4. Первый гелиоцентрист

    5. Труды Александрийских астрономов

    6. Аристарх: совершенный метод (истинные его труды и успехи; рассуждения выдающегося ученого; великая теория - неудача, как следствие);

    7. “Phaenomena” Евклида и основные элементы небесной сферы

    9. Календарь и звезды древней Греции

    III. Заключение: роль астрономов древней Греции

    Вступление

    Оценивая проделанный человечеством путь в поисках истины о Земле, мы вольно или невольно обращаемся к древним грекам. Многое зародилось у них, но и через них немало дошло до нас от других народов. Так распорядилась история: научные представления и территориальные открытия египтян, шумеров и прочих древневосточных народов нередко сохранились лишь в памяти греков, а от них стали известны последующим поколениям. Яркий пример тому - подробные известия о финикийцах, населявших узкую полосу восточного побережья Средиземного моря и в ІІ-І тысячелетиях до н. э. открывших Европу и приморские районы Северо-западной Африки. Страбон, римский ученый и грек по происхождению, в своей семнадцатитомной «Географии» написал: «До настоящего времени эллины многое заимствуют у египетских жрецов и халдеев». А ведь Страбон скептически относился к своим предшественникам, в том числе и к египтянам.

    Расцвет греческой цивилизации приходится на период между VI веком до н.э. и серединой II века до н. э. Хронологически он почти совпадает со временем существования классической Греции и эллинизма. Это время с учетом нескольких столетий, когда поднялась, процветала и погибла Римская империя, называется античным Его исходным рубежом принято считать VII-II века до н.э., когда быстро развивались полисы-греческие города-государства. Эта форма государственного устройства стала отличительной чертой греческого мира.

    Развитие знаний у греков не имеет аналогов истории того времени. Масштабы постижения наук можно представить хотя бы по тому факту, что менее чем за три столетия (!) прошла свой путь греческая математика – от Пифагора до Евклида, греческая астрономия – от Фалеса до Евклида, греческое естествознание – от Анаксимандра до Аристотеля и Феофраста, греческая география – от Геккатея Милетского до Эратосфена и Гиппарха и т. д..

    Открытие новых земель, сухопутные или морские странствия, военные походы, перенаселения в благодатные районы – все это нередко мифологизировалось. В поэмах с присущим грекам художественным мастерством мифическое соседствовало с реальным. В них излагались научные познания, сведения о природе вещей, а также географические данные. Впрочем, последние порой бывает трудно идентифицировать с сегодняшними представлениями. И, тем не менее, они – показатель широких воззрений греков на ойкумену.

    Греки уделяли большое внимание конкретному географическому познанию Земли. Даже во время военных походов их не покидало желание записать все то, что видели в покоренных странах. В войсках Александра Македонского выделили даже специальных шагомеров, которые подсчитывали пройденные расстояния, составляли описание маршрутов движения и наносили их на карту. На основе полученных ими данных Дикеарх, ученик знаменитого Аристотеля, составил подробную карту тогдашней по его представлению ойкумены.

    Простейшие картографические рисунки были известны еще в первобытном обществе, задолго до появления письменности. Об этом позволяют судить наскальные рисунки. Первые карты появились в Древнем Египте. На глиняных табличках наносились контуры отдельных территорий с обозначением некоторых объектов. Не позднее 1700 года до н. е. египтяне составили карту освоенной двух тысячекилометровой части Нила.

    Картографированием местности занимались также вавилоняне, ассирийцы и другие народы Древнего востока…

    Какой же виделась Земля? Какое они отводили себе место на ней? Каковы были их представления об ойкумене?


    Астрономия древних греков

    В греческой науке твердо установилось мнение (с различными, конечно, вариациями), что Земля подобна плоскому или выпуклому диску, окруженному океаном. От этой точки зрения многие греческие мыслители не отказались даже тогда, когда в эпоху Платона и Аристотеля, казалось, возобладали представления о шарообразности Земли. Увы, уже в те далекие времена прогрессивная идея пробивала себе дорогу с большим трудом, требовала от своих сторонников жертв, но, к счастью, тогда еще «не казался ересью талант», а «в аргументах не ходил сапог».

    Идея диска (барабана или даже цилиндра) была очень удобна для подтверждения широко распространенного убеждения о срединном положении Эллады. Она же была вполне приемлема для изображения суши, плавающей в океане.

    В пределах дискообразной (а позднее шарообразной) Земли выделялась ойкумена. Что по – древнегречески означает вся обитаемая земля, вселенная. Обозначение одним словом двух, казалось бы, разных понятий (для греков тогда они представлялись одно-порядковыми) глубоко симптоматично.

    О Пифагоре (VI век до н.э.) сохранилось мало достоверных сведений. Известно, что родился он на острове самос; вероятно, в молодости посетил Милет, где учился у Анаксимандра; может быть, совершил и более далекие путешествия. Уже в зрелом возрасте философ переселился в город Кротон и основал там нечто вроде религиозного одена – Пифагорейское братство, которое распространило свое влияние на многие греческие города Южной Италии. Жизнь братства была окружена тайной. О его основателе Пифагоре ходили легенды, которые, по-видимому, имели под собой какую-то основу: великий ученый был не менее великим политиком и провидцем.

    Основой учения Пифагора была вера в переселение душ и гармоничное устройство мира. Он полагал, что душу очищает музыка и умственный труд, поэтому пифагорейцы считали обезательным совершествование в “четырех искусствах” – арифметике, музыке, геометрии и астрономии. Сам Пифагор является основоположником теории чисел, а доказанная им теорема известна сегодня каждому школьнику. И если Анаксагор и Демокрит в своих взглядах на мир развивали идею Анаксимандра о физических причинах природных явлений, то Пифагор разделял его убежденность в математической гармонии космоса.

    Пифагорейцы властвовали в греческих городах Италии несколько десятилетий, потом были разгромлены и отошли от политики. Однако многое из того, что вдохнул в них Пифагор, осталось жить и оказало огромное влияние на науку. Сейчас очень трудно отделить вклад самого Пифагора от достижений его последователей. В особенности это относится к астрономии, в которой было выдвинуто несколько принципиально новых идей. О них можно судить по дошедшим до нас скудным сведениям о представлениях поздних пифагорейцев и учениями философов, испытавших влияние идей Пифагора.

    Аристотель и первая научная картина мира

    Аристотель родился в македонском городе Стагира в семье придворного лекаря. Семнадцатилетниим юношей попадает он в Афины, где становится учеником Академии, основанной философом Платоном.

    Сначала система Платона увлекала Аристотеля, но постепенно он пришел к выводу, что взгляды учителя уводят от истины. И тогда Аристотель ушел из Академии, бросив знаменитую фразу: ”Платон мне друг, но истина дороже”. Император Филипп Македонский приглашает Аристотеля стать воспитателем наследника престола. Философ соглашается и три года нетлучно находится возле будущего основателя великой империи Александра Македонского. В шестнадцать лет его ученик возглавил войско отца и, разбив фиванцев в своей первой битве при Херонее, отправился в походы.

    Снова Аристотель переезжает в Афины, и в одном из районов, под названием Ликей, открывает школу. Он много пишет. Его сочинения настолько разнообразны, что трудно представить себе Аристотеля одиноким мыслителем. Скорее всего, в эти годы он выступал как глава большой школы, где ученики работали под его руководством, подобно тому как сегодня аспиранты разрабатывают темы, которые предлагают им руководители.

    Много внимания уделял греческий философ вопросам строения мира. Аристотель был убежден, что в центре Вселенной, безусловно, находится Земля.

    Аристотель пытался все объяснить причинами, которые близки здравому смыслу наблюдателя. Так, наблюдая Луну, он заметил, что в различных фазах она в точности соответствует тому виду, который принимал бы шар, с одной стороны освещаемый Солнцем. Столь же строго и логично было его доказательство шарообразности Земли. Обсудив все возможные причины затмения Луны, Аристотель приходит к выводу, что тень на ее поверхности может принадлежать только Земле. А поскольку тень кругла, то и тело, отбрасывающее её, должно иметь такую же форму. Но Аристотель им не ограничивается. “Почему, - спрашивает он, - когда мы перемещаемся к северу или к югу, созвездия меняют свои положения относительно горизонта?” И тут же отвечает: “Потому, что Земля обладает кривизной ”. Действительно, будь Земля плоской, где бы ни находился наблюдатель, у него над головой сияли бы одни и те же созвездия. Совсем другое дело – на круглой Земле. Здесь у каждого наблюдателя свой горизонт, свой горизонт, своё небо… Однако, признавая шарообразность Земли, Аристотель категорически высказывался против возможности ее обращения вокруг Солнца. “Будь так, - рассуждал он, - нам казалось бы что звезды не находятся неподвижно на небесной сфере, а описывают кружки…” Это было серьезное возражение, пожалуй, самое серьезное, которое удалось устранить лишь много-много веков спустя, в XIX столетии.

    Об Аристотеле написано очень много. Авторитет этого философа невероятно высок. И это вполне заслужено. Потому что, несмотря на довольно многочисленные ошибки и заблуждения, в своих сочинениях Аристотель собрал все, чего добился разум за период античной цивилизации. Его сочинения – настоящая энциклопедия современной ему науки.