Войти
Логопедический портал
  • Почему нужно изучать русский язык?
  • Правила написания синквейна
  • Сочинение герасим и татьяна в рассказе тургенева муму
  • Письменный рассказ о героях, живущих в доме барыни из «Муму» И
  • Про россию на китайском языке Как нельзя называть женщин в Китае
  • Что значит моя мечта. Значение слова мечтать. Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова
  • Деление чисел с большими степенями. Урок "умножение и деление степеней". Правила умножения степеней с разным основанием

    Деление чисел с большими степенями. Урок

    В предыдущей статье мы рассказали, что из себя представляют одночлены. В этом материале разберем, как решать примеры и задачи, в которых они применяются. Здесь будут рассмотрены такие действия, как вычитание, сложение, умножение, деление одночленов и возведение их в степень с натуральным показателем. Мы покажем, как определяются такие операции, обозначим основные правила их выполнения и то, что должно получится в результате. Все теоретические положения, как обычно, будут проиллюстрированы примерами задач с описаниями решений.

    Удобнее всего работать со стандартной записью одночленов, поэтому все выражения, которые будут использованы в статье, мы приводим в стандартном виде. Если изначально они заданы иначе, рекомендуется сначала привести их к общепринятой форме.

    Правила сложения и вычитания одночленов

    Наиболее простые действия, которые можно проводить с одночленами – это вычитание и сложение. В общем случае результатом этих действий будет являться многочлен (одночлен возможен в некоторых частных случаях).

    Когда мы складываем или вычитаем одночлены, сначала записываем в общепринятой форме соответствующую сумму и разность, после чего упрощаем получившееся выражение. Если есть подобные слагаемые, их нужно привести, скобки – раскрыть. Поясним на примере.

    Пример 1

    Условие: выполните сложение одночленов − 3 · x и 2 , 72 · x 3 · y 5 · z .

    Решение

    Запишем сумму исходных выражений. Добавим скобки и поставим между ними плюс. У нас получится следующее:

    (− 3 · x) + (2 , 72 · x 3 · y 5 · z)

    Когда мы выполним раскрытие скобок, получится - 3 · x + 2 , 72 · x 3 · y 5 · z . Это многочлен, записанный в стандартной форме, который и будет результатом сложения данных одночленов.

    Ответ: (− 3 · x) + (2 , 72 · x 3 · y 5 · z) = − 3 · x + 2 , 72 · x 3 · y 5 · z .

    Если у нас задано три, четыре и больше слагаемых, мы осуществляем это действие точно так же.

    Пример 2

    Условие: проведите в правильном порядке указанные действия с многочленами

    3 · a 2 - (- 4 · a · c) + a 2 - 7 · a 2 + 4 9 - 2 2 3 · a · c

    Решение

    Начнем с раскрытия скобок.

    3 · a 2 + 4 · a · c + a 2 - 7 · a 2 + 4 9 - 2 2 3 · a · c

    Мы видим, что полученное выражение можно упростить путем приведения подобных слагаемых:

    3 · a 2 + 4 · a · c + a 2 - 7 · a 2 + 4 9 - 2 2 3 · a · c = = (3 · a 2 + a 2 - 7 · a 2) + 4 · a · c - 2 2 3 · a · c + 4 9 = = - 3 · a 2 + 1 1 3 · a · c + 4 9

    У нас получился многочлен, который и будет результатом данного действия.

    Ответ: 3 · a 2 - (- 4 · a · c) + a 2 - 7 · a 2 + 4 9 - 2 2 3 · a · c = - 3 · a 2 + 1 1 3 · a · c + 4 9

    В принципе, мы можем выполнить сложение и вычитание двух одночленов с некоторыми ограничениями так, чтобы получить в итоге одночлен. Для этого нужно соблюсти некоторые условия, касающиеся слагаемых и вычитаемых одночленов. О том, как это делается, мы расскажем в отдельной статье.

    Правила умножения одночленов

    Действие умножения не налагает никаких ограничений на множители. Умножаемые одночлены не должны соответствовать никаким дополнительным условиям, чтобы в результате получится одночлен.

    Чтобы выполнить умножение одночленов, нужно выполнить следующие шаги:

    1. Правильно записать произведение.
    2. Раскрыть скобки в полученном выражении.
    3. Сгруппировать по возможности множители с одинаковыми переменными и числовые множители отдельно.
    4. Выполнить необходимые действия с числами и применить к оставшимся множителям свойство умножения степеней с одинаковыми основаниями.

    Посмотрим, как это делается на практике.

    Пример 3

    Условие: выполните умножение одночленов 2 · x 4 · y · z и - 7 16 · t 2 · x 2 · z 11 .

    Решение

    Начнем с составления произведения.

    Раскрываем в нем скобки и получаем следующее:

    2 · x 4 · y · z · - 7 16 · t 2 · x 2 · z 11

    2 · - 7 16 · t 2 · x 4 · x 2 · y · z 3 · z 11

    Все, что нам осталось сделать – это умножить числа в первых скобках и применить свойство степеней для вторых. В итоге получим следующее:

    2 · - 7 16 · t 2 · x 4 · x 2 · y · z 3 · z 11 = - 7 8 · t 2 · x 4 + 2 · y · z 3 + 11 = = - 7 8 · t 2 · x 6 · y · z 14

    Ответ: 2 · x 4 · y · z · - 7 16 · t 2 · x 2 · z 11 = - 7 8 · t 2 · x 6 · y · z 14 .

    Если у нас в условии стоят три многочлена и больше, мы умножаем их по точно такому же алгоритму. Более подробно вопрос умножения одночленов мы рассмотрим в рамках отдельного материала.

    Правила возведения одночлена в степень

    Мы знаем, что степенью с натуральным показателем называют произведение некоторого числа одинаковых множителей. На их количество указывает число в показателе. Согласно этому определению, возведение одночлена в степень равнозначно умножению указанного числа одинаковых одночленов. Посмотрим, как это делается.

    Пример 4

    Условие: выполните возведение одночлена − 2 · a · b 4 в степень 3 .

    Решение

    Мы можем заменить возведение в степень на умножение 3 -х одночленов − 2 · a · b 4 . Запишем и получим нужный ответ:

    (− 2 · a · b 4) 3 = (− 2 · a · b 4) · (− 2 · a · b 4) · (− 2 · a · b 4) = = ((− 2) · (− 2) · (− 2)) · (a · a · a) · (b 4 · b 4 · b 4) = − 8 · a 3 · b 12

    Ответ: (− 2 · a · b 4) 3 = − 8 · a 3 · b 12 .

    А как быть в том случае, когда степень имеет большой показатель? Записывать большое количество множителей неудобно. Тогда для решения такой задачи нам надо применить свойства степени, а именно свойство степени произведения и свойство степени в степени.

    Решим задачу, которую мы привели выше, указанным способом.

    Пример 5

    Условие: выполните возведение − 2 · a · b 4 в третью степень.

    Решение

    Зная свойство степени в степени, мы можем перейти к выражению следующего вида:

    (− 2 · a · b 4) 3 = (− 2) 3 · a 3 · (b 4) 3 .

    После этого мы возводим в степень - 2 и применяем свойство степени в степени:

    (− 2) 3 · (a) 3 · (b 4) 3 = − 8 · a 3 · b 4 · 3 = − 8 · a 3 · b 12 .

    Ответ: − 2 · a · b 4 = − 8 · a 3 · b 12 .

    Возведению одночлена в степень мы также посвятили отдельную статью.

    Правила деления одночленов

    Последнее действие с одночленами, которое мы разберем в данном материале, – деление одночлена на одночлен. В результате мы должны получить рациональную (алгебраическую) дробь (в некоторых случаях возможно получение одночлена). Сразу уточним, что деление на нулевой одночлен не определяется, поскольку не определяется деление на 0.

    Для выполнения деления нам нужно записать указанные одночлены в форме дроби и сократить ее, если есть такая возможность.

    Пример 6

    Условие: выполните деление одночлена − 9 · x 4 · y 3 · z 7 на − 6 · p 3 · t 5 · x 2 · y 2 .

    Решение

    Начнем с записи одночленов в форме дроби.

    9 · x 4 · y 3 · z 7 - 6 · p 3 · t 5 · x 2 · y 2

    Эту дробь можно сократить. После выполнения этого действия получим:

    3 · x 2 · y · z 7 2 · p 3 · t 5

    Ответ: - 9 · x 4 · y 3 · z 7 - 6 · p 3 · t 5 · x 2 · y 2 = 3 · x 2 · y · z 7 2 · p 3 · t 5 .

    Условия, при которых в результате деления одночленов мы получим одночлен, приводятся в отдельной статье.

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

    Если вам нужно возвести какое-то конкретное число в степень, можете воспользоваться . А сейчас мы более подробно остановимся на свойствах степеней .

    Экспоненциальные числа открывают большие возможности, они позволяют нам преобразовать умножение в сложение, а складывать гораздо легче, чем умножать.

    Например, нам надо умножить 16 на 64. Произведение от умножения этих двух чисел равно 1024. Но 16 – это 4×4, а 64 – это 4х4х4. То есть 16 на 64=4x4x4x4x4, что также равно 1024.

    Число 16 можно представить также в виде 2х2х2х2, а 64 как 2х2х2х2х2х2, и если произвести умножение, мы опять получим 1024.

    А теперь используем правило . 16=4 2 , или 2 4 , 64=4 3 , или 2 6 , в то же время 1024=6 4 =4 5 , или 2 10 .

    Следовательно, нашу задачу можно записать по-другому: 4 2 х4 3 =4 5 или 2 4 х2 6 =2 10 , и каждый раз мы получаем 1024.

    Мы можем решить ряд аналогичных примеров и увидим, что умножение чисел со степенями сводится к сложению показателей степени , или экспонент, разумеется, при том условии, что основания сомножителей равны.

    Таким образом, мы можем, не производя умножения, сразу сказать, что 2 4 х2 2 х2 14 =2 20 .

    Это правило справедливо также и при делении чисел со степенями, но в этом случае экспонента делителя вычитается из экспоненты делимого . Таким образом, 2 5:2 3 =2 2 , что в обычных числах равно 32:8=4, то есть 2 2 . Подведем итоги:

    a m х a n =a m+n , a m: a n =a m-n , где m и n — целые числа.

    С первого взгляда может показаться, что такое умножение и деление чисел со степенями не очень удобно, ведь сначала надо представить число в экспоненциальной форме. Нетрудно представить в такой форме числа 8 и 16, то есть 2 3 и 2 4 , но как это сделать с числами 7 и 17? Или как поступать в тех случаях, когда число можно представить в экспоненциальной форме, но основания экспоненциальных выражений чисел сильно различаются. Например, 8×9 – это 2 3 х3 2 , и в этом случае мы не можем суммировать экспоненты. Ни 2 5 и ни 3 5 не являются ответом, ответ также не лежит в интервале между этими двумя числами.

    Тогда стоит ли вообще возиться с этим методом? Безусловно стоит. Он дает огром­ные преимущества, особенно при сложных и трудоемких вычислениях.

    Если не обращать внимание на восьмую степень, что мы здесь видим? Вспоминаем программу 7 класса. Итак, вспомнили? Это формула сокращенного умножения, а именно - разность квадратов! Получаем:

    Внимательно смотрим на знаменатель. Он очень похож на один из множителей числителя, но что не так? Не тот порядок слагаемых. Если бы их поменять местами, можно было бы применить правило.

    Но как это сделать? Оказывается, очень легко: здесь нам помогает четная степень знаменателя.

    Магическим образом слагаемые поменялись местами. Это «явление» применимо для любого выражения в четной степени: мы можем беспрепятственно менять знаки в скобках.

    Но важно запомнить: меняются все знаки одновременно !

    Вернемся к примеру:

    И снова формула:

    Целыми мы называем натуральные числа, противоположные им (то есть взятые со знаком « ») и число.

    целое положительное число , а оно ничем не отличается от натурального, то все выглядит в точности как в предыдущем разделе.

    А теперь давайте рассмотрим новые случаи. Начнем с показателя, равного.

    Любое число в нулевой степени равно единице :

    Как всегда, зададимся вопросом: почему это так?

    Рассмотрим какую-нибудь степень с основанием. Возьмем, например, и домножим на:

    Итак, мы умножили число на, и получили то же, что и было - . А на какое число надо умножить, чтобы ничего не изменилось? Правильно, на. Значит.

    Можем проделать то же самое уже с произвольным числом:

    Повторим правило:

    Любое число в нулевой степени равно единице.

    Но из многих правил есть исключения. И здесь оно тоже есть - это число (в качестве основания).

    С одной стороны, в любой степени должен равняться - сколько ноль сам на себя ни умножай, все-равно получишь ноль, это ясно. Но с другой стороны, как и любое число в нулевой степени, должен равняться. Так что из этого правда? Математики решили не связываться и отказались возводить ноль в нулевую степень. То есть теперь нам нельзя не только делить на ноль, но и возводить его в нулевую степень.

    Поехали дальше. Кроме натуральных чисел и числа к целым относятся отрицательные числа. Чтобы понять, что такое отрицательная степень, поступим как в прошлый раз: домножим какое-нибудь нормальное число на такое же в отрицательной степени:

    Отсюда уже несложно выразить искомое:

    Теперь распространим полученное правило на произвольную степень:

    Итак, сформулируем правило:

    Число в отрицательной степени обратно такому же числу в положительной степени. Но при этом основание не может быть нулевым: (т.к. на делить нельзя).

    Подведем итоги:

    I. Выражение не определено в случае. Если, то.

    II. Любое число в нулевой степени равно единице: .

    III. Число, не равное нулю, в отрицательной степени обратно такому же числу в положительной степени: .

    Задачи для самостоятельного решения:

    Ну и, как обычно, примеры для самостоятельного решения:

    Разбор задач для самостоятельного решения:

    Знаю-знаю, числа страшные, но на ЕГЭ надо быть готовым ко всему! Реши эти примеры или разбери их решение, если не смог решить и ты научишься легко справляться с ними на экзамене!

    Продолжим расширять круг чисел, «пригодных» в качестве показателя степени.

    Теперь рассмотрим рациональные числа. Какие числа называются рациональными?

    Ответ: все, которые можно представить в виде дроби, где и - целые числа, причем.

    Чтобы понять, что такое «дробная степень» , рассмотрим дробь:

    Возведем обе части уравнения в степень:

    Теперь вспомним правило про «степень в степени» :

    Какое число надо возвести в степень, чтобы получить?

    Эта формулировка - определение корня -ой степени.

    Напомню: корнем -ой степени числа () называется число, которое при возведении в степень равно.

    То есть, корень -ой степени - это операция, обратная возведению в степень: .

    Получается, что. Очевидно, этот частный случай можно расширить: .

    Теперь добавляем числитель: что такое? Ответ легко получить с помощью правила «степень в степени»:

    Но может ли основание быть любым числом? Ведь корень можно извлекать не из всех чисел.

    Никакое!

    Вспоминаем правило: любое число, возведенное в четную степень - число положительное. То есть, извлекать корни четной степени из отрицательных чисел нельзя!

    А это значит, что нельзя такие числа возводить в дробную степень с четным знаменателем, то есть выражение не имеет смысла.

    А что насчет выражения?

    Но тут возникает проблема.

    Число можно представить в виде дргих, сократимых дробей, например, или.

    И получается, что существует, но не существует, а ведь это просто две разные записи одного и того же числа.

    Или другой пример: раз, то можно записать. Но стоит нам по-другому записать показатель, и снова получим неприятность: (то есть, получили совсем другой результат!).

    Чтобы избежать подобных парадоксов, рассматриваем только положительное основание степени с дробным показателем .

    Итак, если:

    Примеры:

    Степени с рациональным показателем очень полезны для преобразования выражений с корнями, например:

    5 примеров для тренировки

    Разбор 5 примеров для тренировки

    1. Не забываем об обычных свойствах степеней:

    2. . Здесь вспоминаем, что забыли выучить таблицу степеней:

    ведь - это или. Решение находится автоматически: .

    Ну а теперь - самое сложное. Сейчас мы разберем степень с иррациональным показателем .

    Все правила и свойства степеней здесь точно такие же, как и для степени с рациональным показателем, за исключением

    Ведь по определению иррациональные числа - это числа, которые невозможно представить в виде дроби, где и - целые числа (то есть, иррациональные числа - это все действительные числа кроме рациональных).

    При изучении степеней с натуральным, целым и рациональным показателем, мы каждый раз составляли некий «образ», «аналогию», или описание в более привычных терминах.

    Например, степень с натуральным показателем - это число, несколько раз умноженное само на себя;

    ...число в нулевой степени - это как-бы число, умноженное само на себя раз, то есть его еще не начали умножать, значит, само число еще даже не появилось - поэтому результатом является только некая «заготовка числа», а именно число;

    ...степень с целым отрицательным показателем - это как будто произошел некий «обратный процесс», то есть число не умножали само на себя, а делили.

    Между прочим, в науке часто используется степень с комплексным показателем, то есть показатель - это даже не действительное число.

    Но в школе мы о таких сложностях не думаем, постичь эти новые понятия тебе представится возможность в институте.

    КУДА МЫ УВЕРЕНЫ ТЫ ПОСТУПИШЬ! (если научишься решать такие примеры:))

    Например:

    Реши самостоятельно:

    Разбор решений:

    1. Начнем с уже обычного для нас правила возведения степени в степень:

    Теперь посмотри на показатель. Ничего он тебе не напоминает? Вспоминаем формулу сокращенного умножения разность квадратов:

    В данном случае,

    Получается, что:

    Ответ: .

    2. Приводим дроби в показателях степеней к одинаковому виду: либо обе десятичные, либо обе обычные. Получим, например:

    Ответ: 16

    3. Ничего особенного, применяем обычные свойства степеней:

    ПРОДВИНУТЫЙ УРОВЕНЬ

    Определение степени

    Степенью называется выражение вида: , где:

    • основание степени;
    • — показатель степени.

    Степень с натуральным показателем {n = 1, 2, 3,...}

    Возвести число в натуральную степень n — значит умножить число само на себя раз:

    Степень с целым показателем {0, ±1, ±2,...}

    Если показателем степени является целое положительное число:

    Возведение в нулевую степень :

    Выражение неопределенное, т.к., с одной стороны, в любой степени - это, а с другой - любое число в -ой степени - это.

    Если показателем степени является целое отрицательное число:

    (т.к. на делить нельзя).

    Еще раз о нулях: выражение не определено в случае. Если, то.

    Примеры:

    Степень с рациональным показателем

    • — натуральное число;
    • — целое число;

    Примеры:

    Свойства степеней

    Чтобы проще было решать задачи, попробуем понять: откуда эти свойства взялись? Докажем их.

    Посмотрим: что такое и?

    По определению:

    Итак, в правой части этого выражения получается такое произведение:

    Но по определению это степень числа с показателем, то есть:

    Что и требовалось доказать.

    Пример : Упростите выражение.

    Решение : .

    Пример : Упростите выражение.

    Решение : Важно заметить, что в нашем правиле обязательно должны быть одинаковые основания. Поэтому степени с основанием мы объединяем, а остается отдельным множителем:

    Еще одно важное замечание: это правило - только для произведения степеней !

    Ни в коем случае нелья написать, что.

    Так же, как и с предыдущим свойством, обратимся к определению степени:

    Перегруппируем это произведение так:

    Получается, что выражение умножается само на себя раз, то есть, согласно определению, это и есть -я степень числа:

    По сути это можно назвать «вынесением показателя за скобки». Но никогда нельзя этого делать в сумме: !

    Вспомним формулы сокращенного умножения: сколько раз нам хотелось написать? Но это неверно, ведь.

    Степень с отрицательным основанием.

    До этого момента мы обсуждали только то, каким должен быть показатель степени. Но каким должно быть основание? В степенях с натуральным показателем основание может быть любым числом .

    И правда, мы ведь можем умножать друг на друга любые числа, будь они положительные, отрицательные, или даже. Давайте подумаем, какие знаки (« » или « ») будут иметь степени положительных и отрицательных чисел?

    Например, положительным или отрицательным будет число? А? ?

    С первым все понятно: сколько бы положительных чисел мы друг на друга не умножали, результат будет положительным.

    Но с отрицательными немного интереснее. Мы ведь помним простое правило из 6 класса: «минус на минус дает плюс». То есть, или. Но если мы умножим на (), получится - .

    И так до бесконечности: при каждом следующем умножении знак будет меняться. Можно сформулировать такие простые правила:

    1. четную степень, - число положительное .
    2. Отрицательное число, возведенное в нечетную степень, - число отрицательное .
    3. Положительное число в любой степени - число положительное.
    4. Ноль в любой степени равен нулю.

    Определи самостоятельно, какой знак будут иметь следующие выражения:

    1. 2. 3.
    4. 5. 6.

    Справился? Вот ответы:

    1) ; 2) ; 3) ; 4) ; 5) ; 6) .

    В первых четырех примерах, надеюсь, все понятно? Просто смотрим на основание и показатель степени, и применяем соответствующее правило.

    В примере 5) все тоже не так страшно, как кажется: ведь неважно, чему равно основание - степень четная, а значит, результат всегда будет положительным. Ну, за исключением случая, когда основание равно нулю. Основание ведь не равно? Очевидно нет, так как (потому что).

    Пример 6) уже не так прост. Тут нужно узнать, что меньше: или? Если вспомнить, что, становится ясно, что, а значит, основание меньше нуля. То есть, применяем правило 2: результат будет отрицательным.

    И снова используем определение степени:

    Все как обычно - записываем определение степеней и, делим их друг на друга, разбиваем на пары и получаем:

    Прежде чем разобрать последнее правило, решим несколько примеров.

    Вычисли значения выражений:

    Решения :

    Если не обращать внимание на восьмую степень, что мы здесь видим? Вспоминаем программу 7 класса. Итак, вспомнили? Это формула сокращенного умножения, а именно - разность квадратов!

    Получаем:

    Внимательно смотрим на знаменатель. Он очень похож на один из множителей числителя, но что не так? Не тот порядок слагаемых. Если бы их поменять местами, можно было бы применить правило 3. Но как это сделать? Оказывается, очень легко: здесь нам помогает четная степень знаменателя.

    Если домножить его на, ничего не поменяется, верно? Но теперь получается следующее:

    Магическим образом слагаемые поменялись местами. Это «явление» применимо для любого выражения в четной степени: мы можем беспрепятственно менять знаки в скобках. Но важно запомнить: меняются все знаки одновременно! Нельзя заменить на, изменив только один неугодный нам минус!

    Вернемся к примеру:

    И снова формула:

    Итак, теперь последнее правило:

    Как будем доказывать? Конечно, как обычно: раскроем понятие степени и упростим:

    Ну а теперь раскроем скобки. Сколько всего получится букв? раз по множителей - что это напоминает? Это не что иное, как определение операции умножения : всего там оказалось множителей. То есть, это, по определению, степень числа с показателем:

    Пример:

    Степень с иррациональным показателем

    В дополнение к информации о степенях для среднего уровня, разберем степень с иррациональным показателем. Все правила и свойства степеней здесь точно такие же, как и для степени с рациональным показателем, за исключением - ведь по определению иррациональные числа - это числа, которые невозможно представить в виде дроби, где и - целые числа (то есть, иррациональные числа - это все действительные числа, кроме рациональных).

    При изучении степеней с натуральным, целым и рациональным показателем, мы каждый раз составляли некий «образ», «аналогию», или описание в более привычных терминах. Например, степень с натуральным показателем - это число, несколько раз умноженное само на себя; число в нулевой степени - это как-бы число, умноженное само на себя раз, то есть его еще не начали умножать, значит, само число еще даже не появилось - поэтому результатом является только некая «заготовка числа», а именно число; степень с целым отрицательным показателем - это как будто произошел некий «обратный процесс», то есть число не умножали само на себя, а делили.

    Вообразить степень с иррациональным показателем крайне сложно (так же, как сложно представить 4-мерное пространство). Это, скорее, чисто математический объект, который математики создали, чтобы расширить понятие степени на все пространство чисел.

    Между прочим, в науке часто используется степень с комплексным показателем, то есть показатель - это даже не действительное число. Но в школе мы о таких сложностях не думаем, постичь эти новые понятия тебе представится возможность в институте.

    Итак, что мы делаем, если видим иррациональный показатель степени? Всеми силами пытаемся от него избавиться!:)

    Например:

    Реши самостоятельно:

    1) 2) 3)

    Ответы:

    1. Вспоминаем формулу разность квадратов. Ответ: .
    2. Приводим дроби к одинаковому виду: либо обе десятичные, либо обе обычные. Получим, например: .
    3. Ничего особенного, применяем обычные свойства степеней:

    КРАТКОЕ ИЗЛОЖЕНИЕ РАЗДЕЛА И ОСНОВНЫЕ ФОРМУЛЫ

    Степенью называется выражение вида: , где:

    Степень с целым показателем

    степень, показатель которой — натуральное число (т.е. целое и положительное).

    Степень с рациональным показателем

    степень, показатель которой — отрицательные и дробные числа.

    Степень с иррациональным показателем

    степень, показатель которой — бесконечная десятичная дробь или корень.

    Свойства степеней

    Особенности степеней.

    • Отрицательное число, возведенное в четную степень, - число положительное .
    • Отрицательное число, возведенное в нечетную степень, - число отрицательное .
    • Положительное число в любой степени - число положительное.
    • Ноль в любой степени равен.
    • Любое число в нулевой степени равно.

    ТЕПЕРЬ ТЕБЕ СЛОВО...

    Как тебе статья? Напиши внизу в комментариях понравилась или нет.

    Расскажи о своем опыте использования свойств степеней.

    Возможно у тебя есть вопросы. Или предложения.

    Напиши в комментариях.

    И удачи на экзаменах!

    Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.

    Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.

    Свойство № 1
    Произведение степеней

    Запомните!

    При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.

    a m · a n = a m + n , где «a » — любое число, а «m », «n » — любые натуральные числа.

    Данное свойство степеней также действует на произведение трёх и более степеней.

    • Упростить выражение.
      b · b 2 · b 3 · b 4 · b 5 = b 1 + 2 + 3 + 4 + 5 = b 15
    • Представить в виде степени.
      6 15 · 36 = 6 15 · 6 2 = 6 15 · 6 2 = 6 17
    • Представить в виде степени.
      (0,8) 3 · (0,8) 12 = (0,8) 3 + 12 = (0,8) 15

    Важно!

    Обратите внимание, что в указанном свойстве речь шла только об умножении степеней с одинаковыми основаниями . Оно не относится к их сложению.

    Нельзя заменять сумму (3 3 + 3 2) на 3 5 . Это понятно, если
    посчитать (3 3 + 3 2) = (27 + 9) = 36 , а 3 5 = 243

    Свойство № 2
    Частное степеней

    Запомните!

    При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.

    = 11 3 − 2 · 4 2 − 1 = 11 · 4 = 44
  • Пример. Решить уравнение. Используем свойство частного степеней.
    3 8: t = 3 4

    T = 3 8 − 4

    Ответ: t = 3 4 = 81
  • Пользуясь свойствами № 1 и № 2, можно легко упрощать выражения и производить вычисления.

    • Пример. Упростить выражение.
      4 5m + 6 · 4 m + 2: 4 4m + 3 = 4 5m + 6 + m + 2: 4 4m + 3 = 4 6m + 8 − 4m − 3 = 4 2m + 5
    • Пример. Найти значение выражения, используя свойства степени.
      = = = 2 9 + 2
      2 5
      = 2 11
      2 5
      = 2 11 − 5 = 2 6 = 64

      Важно!

      Обратите внимание, что в свойстве 2 речь шла только о делении степеней с одинаковыми основаниями.

      Нельзя заменять разность (4 3 −4 2) на 4 1 . Это понятно, если посчитать (4 3 −4 2) = (64 − 16) = 48 , а 4 1 = 4

      Будьте внимательны!

      Свойство № 3
      Возведение степени в степень

      Запомните!

      При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.

      (a n) m = a n · m , где «a » — любое число, а «m », «n » — любые натуральные числа.


      Свойства 4
      Степень произведения

      Запомните!

      При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются.

      (a · b) n = a n · b n , где «a », «b » — любые рациональные числа; «n » — любое натуральное число.

      • Пример 1.
        (6 · a 2 · b 3 · c) 2 = 6 2 · a 2 · 2 · b 3 · 2 · с 1 · 2 = 36 a 4 · b 6 · с 2
      • Пример 2.
        (−x 2 · y) 6 = ((−1) 6 · x 2 · 6 · y 1 · 6) = x 12 · y 6

      Важно!

      Обратите внимание, что свойство № 4, как и другие свойства степеней, применяют и в обратном порядке.

      (a n · b n)= (a · b) n

      То есть, чтобы перемножить степени с одинаковыми показателями можно перемножить основания, а показатель степени оставить неизменным.

      • Пример. Вычислить.
        2 4 · 5 4 = (2 · 5) 4 = 10 4 = 10 000
      • Пример. Вычислить.
        0,5 16 · 2 16 = (0,5 · 2) 16 = 1

      В более сложных примерах могут встретиться случаи, когда умножение и деление надо выполнить над степенями с разными основаниями и разными показателями. В этом случае советуем поступать следующим образом.

      Например, 4 5 · 3 2 = 4 3 · 4 2 · 3 2 = 4 3 · (4 · 3) 2 = 64 · 12 2 = 64 · 144 = 9216

      Пример возведения в степень десятичной дроби.

      4 21 · (−0,25) 20 = 4 · 4 20 · (−0,25) 20 = 4 · (4 · (−0,25)) 20 = 4 · (−1) 20 = 4 · 1 = 4

      Свойства 5
      Степень частного (дроби)

      Запомните!

      Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.

      (a: b) n = a n: b n , где «a », «b » — любые рациональные числа, b ≠ 0, n — любое натуральное число.

      • Пример. Представить выражение в виде частного степеней.
        (5: 3) 12 = 5 12: 3 12

      Напоминаем, что частное можно представить в виде дроби. Поэтому на теме возведение дроби в степень мы остановимся более подробно на следующей странице.