Войти
Логопедический портал
  • Богуславский, михаил соломонович
  • Михаил девятаев Девятаев михаил петрович герой советского
  • День, когда началась война
  • История зарождения и становления русской гвардии
  • Формула силы по закону гука
  • Как понять с какой платформы отправляется поезд
  • Решение квадратных уравнений. Нахождение дискриминанта, формула, сравнение с нулём Дискриминант меньше нуля уравнение

    Решение квадратных уравнений. Нахождение дискриминанта, формула, сравнение с нулём Дискриминант меньше нуля уравнение

    Я им такую классную теорему придумал,
    а они решают через дискриминант:-(((
    (с) Франсуа Виет
    “Несуществующие высказывания”

    Формула корней, или длинный способ

    Всем, кто хотя бы мало-мальски присутствовал на уроках математики в 8 классе, известна формула корней квадратного уравнения. Решение по формуле корней часто называют в простонародье “решением через дискриминант”. Напомним вкратце формулу корней.

    [Вы можете также просмотреть содержание этой статьи в видеоформате ]

    Квадратное уравнение имеет вид ax 2 +bx +c = 0, где a , b , c – некоторые числа. Например, в уравнении 2x 2 + 3x – 5 = 0 эти числа равны: a = 2, b = 3. c = -5. Прежде, чем решать любое квадратное уравнение, нужно “увидеть” эти числа и понять, чему они равны.

    Далее считают так называемый дискриминант по формуле D=b^2-4ac . В нашем случае D = 3^2 – 4 \cdot 2 \cdot (-5) = 9 + 40 = 49. Затем из дискриминанта извлекают корень: \sqrt{D} = \sqrt{49} = 7 .

    После того, как вычислили дискриминант, применяют формулу корней: x_1=\frac{-b-\sqrt{D}}{2a}; x_2=\frac{-b+\sqrt{D}}{2a} :

    x_1=\frac{-3-7}{2 \cdot 2}=\frac{-10}{4}=-2,5
    x_2= \frac{-3+7}{2 \cdot 2}=\frac{4}{4}=1

    И таким образом, уравнение решено. Оно имеет два корня: 1 и -2,5.

    Но это уравнение, как и множество других предлагаемых в школьных учебниках/задачниках, можно было решить гораздо более быстрым способом, если знать пару-тройку лайфхаков. И речь не только о теореме Виета, хотя и она является полезным инструментом.

    Лайфхак первый . Если a + b + c = 0, то x_1=1, x_2=\frac{c}{a} .

    Он применяется только в том случае, если в квадратном уравнении все три коэффициента a , b , c при сложении дают 0. Например, у нас было уравнение 2x 2 + 3x – 5 = 0 . Сложив все три коэффициента, получим 2 + 3 – 5, что равно 0. В этом случае можно не считать дискриминант и не применять формулу корней. Вместо этого можно сразу написать, что

    x_1=1,
    x_2=\frac{c}{a}=\frac{-5}{2}=-2,5

    (заметьте, что тот же результат мы получили в формуле корней).

    Часто спрашивают, всегда ли будет получаться x_1=1 ? Да, всегда, когда a + b + c = 0.

    Лайфхак второй . Если a + c = b , то x_1=-1, x_2=-\frac{c}{a} .

    Пусть дано уравнение 5x 2 + 6x + 1 = 0 . В нём a = 5, b = 6, c = 1. Если сложить “крайние” коэффициенты a и c , получим 5+1 = 6, что как раз равно “среднему” коэффициенту b . Значит, можем обойтись без дискриминанта! Сразу же записываем:

    x_1=-1,
    x_2=-\frac{c}{a}=\frac{-1}{5}=-0,2

    Лайфхак третий (теорема, обратная теореме Виета). Если a = 1, то

    Рассмотрим уравнение x 2 – 12x + 35 = 0. В нём a = 1, b = -12, c = 35. Ни под первый, ни под второй лайфхак оно не подходит – условия не соблюдаются. Если бы оно подходило под первый или под второй, то мы бы обошлись без теоремы Виета.

    Само использование теоремы Виета подразумевает понимание некоторых полезных приёмов.

    Первый приём . Не стоит стесняться записывать саму систему вида \begin{cases} x_1+x_2 = -b \\ x_1 \cdot x_2 = c \end{cases} , которая получается при использовании теоремы Виета. Не нужно пытаться во что бы ты ни стало решить уравнение абсолютно устно, без письменных пометок, как это делают “продвинутые пользователи”.

    Для нашего уравнения x 2 – 12x + 35 = 0 эта система имеет вид

    \begin{cases} x_1+x_2 = 12 \\ x_1 \cdot x_2 = 35 \end{cases}

    Теперь нам нужно устно подобрать числа x_1 и x_2 , которые удовлетворяют нашей системе, т.е. в сумме дают 12, а при умножении 35.

    Так вот, второй приём заключается в том, что начинать подбор нужно не с суммы, а с произведения. Посмотрим на второе уравнение системы и зададимся вопросом: какие числа при умножении дают 35? Если всё в порядке с таблицей умножения, то сразу приходит на ум ответ: 7 и 5. И только теперь подставим эти числа в первое уравнение: будем иметь 7 + 5 = 12, что является верным равенством. Итак, числа 7 и 5 удовлетворяют обоим уравнениям, поэтому мы сразу пишем:

    x_1 = 7, x_2 = 5

    Третий приём заключается в том, что если числа не удаётся подобрать быстро (в течение 15-20 секунд), то вне зависимости от причины нужно считать дискриминант и использовать формулу корней. Почему? Потому что корни могут не подбираться, если уравнение их вообще не имеет (дискриминант отрицательный), или же корни представляют собой числа, не являющиеся целыми.

    Тренировочные упражнения по решению квадратных уравнений

    Попрактикуйтесь! Попробуйте решить следующие уравнения. На каждое уравнение смотрите в следующей последовательности:

    • если уравнение подходит под первый лайфхак (когда a + b + c = 0), то решаем с его помощью;
    • если уравнение подходит под второй лайфхак (когда a + c = b), то решаем с его помощью;
    • если уравнение подходит под третий лайфхак (теорему Виета), решаем с его помощью;
    • и только в самом крайнем случае – если ничего не подошло и/или с помощью теоремы Виета решить не получилось – считаем дискриминант. Еще раз: дискриминант – в самую последнюю очередь !
    1. Решите уравнение x 2 + 3x + 2 = 0
      Просмотреть решение и ответ

      См. лайфхак второй
      В данном уравнении a = 1, b = 3, c = 2. Таким образом, a + c = b, откуда x_1=-1, x_2 = -\frac{c}{a} = -\frac{2}{1}=-2 .
      Ответ: -1, -2.

    2. Решите уравнение x 2 + 8x – 9 = 0
      Просмотреть решение и ответ

      См. лайфхак первый
      В данном уравнении a = 1, b = 8, c = -9. Таким образом, a + b + c = 0, откуда x_1=1, x_2 = \frac{c}{a} = \frac{-9}{1}=-9 .
      Ответ: 1, -9.

    3. Решите уравнение 15x 2 – 11x + 2 = 0
      Просмотреть решение и ответ

      Данное уравнение (единственное из всего списка) не попадает ни под один из лайфхаков, поэтому решать его будем по формуле корней:
      D=b^2-4ac = (-11)^2 – 4 \cdot 15 \cdot 2 = 121 – 120 = 1. x_1=\frac{11-1}{2 \cdot 15}=\frac{10}{30}=\frac{1}{3} x_2= \frac{11+1}{2 \cdot 15}=\frac{12}{30}=\frac{2}{5} Ответ: \frac{1}{3}, \frac{2}{5}.

    4. Решите уравнение x 2 + 9x + 20 = 0
      Просмотреть решение и ответ


      \begin{cases} x_1+x_2 = -9 \\ x_1 \cdot x_2 = 20 \end{cases}
      Подбором устанавливаем, что x_1 = -4, x_2 = -5 .
      Ответ: -4, -5.

    5. Решите уравнение x 2 – 7x – 30 = 0
      Просмотреть решение и ответ

      См. лайфхак третий (теорема Виета)
      В данном уравнении a = 1, поэтому можем записать, что \begin{cases} x_1+x_2 = 7 \\ x_1 \cdot x_2 = -30 \end{cases}
      Подбором устанавливаем, что x_1 = 10, x_2 = -3 .
      Ответ: 10, -3.

    6. Решите уравнение x 2 – 19x + 18 = 0
      Просмотреть решение и ответ

      См. лайфхак первый
      В данном уравнении a = 1, b = -19, c = 18. Таким образом, a + b + c = 0, откуда x_1=1, x_2 = \frac{c}{a} = \frac{18}{1}=18 .
      Ответ: 1, 18.

    7. Решите уравнение x 2 + 7x + 6 = 0
      Просмотреть решение и ответ

      См. лайфхак второй
      В данном уравнении a = 1, b = 7, c = 6. Таким образом, a + c = b, откуда x_1=-1, x_2 = -\frac{c}{a} = -\frac{6}{1}=-6 .
      Ответ: -1, -6.

    8. Решите уравнение x 2 – 8x + 12 = 0
      Просмотреть решение и ответ

      См. лайфхак третий (теорема Виета)
      В данном уравнении a = 1, поэтому можем записать, что \begin{cases} x_1+x_2 = 8 \\ x_1 \cdot x_2 = 12 \end{cases}
      Подбором устанавливаем, что x_1 = 6, x_2 = 2 .
      Ответ: 6, 2.

    9. Решите уравнение x 2 – x – 6 = 0
      Просмотреть решение и ответ

      См. лайфхак третий (теорема Виета)
      В данном уравнении a = 1, поэтому можем записать, что \begin{cases} x_1+x_2 = 1 \\ x_1 \cdot x_2 = -6 \end{cases}
      Подбором устанавливаем, что x_1 = 3, x_2 = -2 .
      Ответ: 3, -2.

    10. Решите уравнение x 2 – 15x – 16 = 0
      Просмотреть решение и ответ

      См. лайфхак второй
      В данном уравнении a = 1, b = -15, c = -16. Таким образом, a + c = b, откуда x_1=-1, x_2 = -\frac{c}{a} = -\frac{-16}{1}=16 .
      Ответ: -1, 16.

    11. Решите уравнение x 2 + 11x – 12 = 0
      Просмотреть решение и ответ

      См. лайфхак первый
      В данном уравнении a = 1, b = 11, c = -12. Таким образом, a + b + c = 0, откуда x_1=1, x_2 = \frac{c}{a} = \frac{-12}{1}=-12 .
      Ответ: 1, -12.

    Квадратные уравнения. Дискриминант. Решение, примеры.

    Внимание!
    К этой теме имеются дополнительные
    материалы в Особом разделе 555.
    Для тех, кто сильно "не очень..."
    И для тех, кто "очень даже...")

    Виды квадратных уравнений

    Что такое квадратное уравнение? Как оно выглядит? В термине квадратное уравнение ключевым словом является "квадратное". Оно означает, что в уравнении обязательно должен присутствовать икс в квадрате. Кроме него, в уравнении могут быть (а могут и не быть!) просто икс (в первой степени) и просто число (свободный член). И не должно быть иксов в степени, больше двойки.

    Говоря математическим языком, квадратное уравнение - это уравнение вида:

    Здесь a, b и с – какие-то числа. b и c – совсем любые, а а – любое, кроме нуля. Например:

    Здесь а =1; b = 3; c = -4

    Здесь а =2; b = -0,5; c = 2,2

    Здесь а =-3; b = 6; c = -18

    Ну, вы поняли…

    В этих квадратных уравнениях слева присутствует полный набор членов. Икс в квадрате с коэффициентом а, икс в первой степени с коэффициентом b и свободный член с.

    Такие квадратные уравнения называются полными.

    А если b = 0, что у нас получится? У нас пропадёт икс в первой степени. От умножения на ноль такое случается.) Получается, например:

    5х 2 -25 = 0,

    2х 2 -6х=0,

    -х 2 +4х=0

    И т.п. А если уж оба коэффицента, b и c равны нулю, то всё ещё проще:

    2х 2 =0,

    -0,3х 2 =0

    Такие уравнения, где чего-то не хватает, называются неполными квадратными уравнениями. Что вполне логично.) Прошу заметить, что икс в квадрате присутствует во всех уравнениях.

    Кстати, почему а не может быть равно нулю? А вы подставьте вместо а нолик.) У нас исчезнет икс в квадрате! Уравнение станет линейным. И решается уже совсем иначе...

    Вот и все главные виды квадратных уравнений. Полные и неполные.

    Решение квадратных уравнений.

    Решение полных квадратных уравнений.

    Квадратные уравнения решаются просто. По формулам и чётким несложным правилам. На первом этапе надо заданное уравнение привести к стандартному виду, т.е. к виду:

    Если уравнение вам дано уже в таком виде - первый этап делать не нужно.) Главное - правильно определить все коэффициенты, а , b и c .

    Формула для нахождения корней квадратного уравнения выглядит так:

    Выражение под знаком корня называется дискриминант . Но о нём - ниже. Как видим, для нахождения икса, мы используем только a, b и с . Т.е. коэффициенты из квадратного уравнения. Просто аккуратно подставляем значения a, b и с в эту формулу и считаем. Подставляем со своими знаками! Например, в уравнении:

    а =1; b = 3; c = -4. Вот и записываем:

    Пример практически решён:

    Это ответ.

    Всё очень просто. И что, думаете, ошибиться нельзя? Ну да, как же…

    Самые распространённые ошибки – путаница со знаками значений a, b и с . Вернее, не с их знаками (где там путаться?), а с подстановкой отрицательных значений в формулу для вычисления корней. Здесь спасает подробная запись формулы с конкретными числами. Если есть проблемы с вычислениями, так и делайте !

    Предположим, надо вот такой примерчик решить:

    Здесь a = -6; b = -5; c = -1

    Допустим, вы знаете, что ответы у вас редко с первого раза получаются.

    Ну и не ленитесь. Написать лишнюю строчку займёт секунд 30. А количество ошибок резко сократится . Вот и пишем подробно, со всеми скобочками и знаками:

    Это кажется невероятно трудным, так тщательно расписывать. Но это только кажется. Попробуйте. Ну, или выбирайте. Что лучше, быстро, или правильно? Кроме того, я вас обрадую. Через некоторое время отпадёт нужда так тщательно всё расписывать. Само будет правильно получаться. Особенно, если будете применять практические приёмы, что описаны чуть ниже. Этот злой пример с кучей минусов решится запросто и без ошибок!

    Но, частенько, квадратные уравнения выглядят слегка иначе. Например, вот так:

    Узнали?) Да! Это неполные квадратные уравнения .

    Решение неполных квадратных уравнений.

    Их тоже можно решать по общей формуле. Надо только правильно сообразить, чему здесь равняются a, b и с .

    Сообразили? В первом примере a = 1; b = -4; а c ? Его вообще нет! Ну да, правильно. В математике это означает, что c = 0 ! Вот и всё. Подставляем в формулу ноль вместо c, и всё у нас получится. Аналогично и со вторым примером. Только ноль у нас здесь не с , а b !

    Но неполные квадратные уравнения можно решать гораздо проще. Безо всяких формул. Рассмотрим первое неполное уравнение. Что там можно сделать в левой части? Можно икс вынести за скобки! Давайте вынесем.

    И что из этого? А то, что произведение равняется нулю тогда, и только тогда, когда какой-нибудь из множителей равняется нулю! Не верите? Хорошо, придумайте тогда два ненулевых числа, которые при перемножении ноль дадут!
    Не получается? То-то…
    Следовательно, можно уверенно записать: х 1 = 0 , х 2 = 4 .

    Всё. Это и будут корни нашего уравнения. Оба подходят. При подстановке любого из них в исходное уравнение, мы получим верное тождество 0 = 0. Как видите, решение куда проще, чем по общей формуле. Замечу, кстати, какой икс будет первым, а какой вторым - абсолютно безразлично. Удобно записывать по порядочку, х 1 - то, что меньше, а х 2 - то, что больше.

    Второе уравнение тоже можно решить просто. Переносим 9 в правую часть. Получим:

    Остаётся корень извлечь из 9, и всё. Получится:

    Тоже два корня. х 1 = -3 , х 2 = 3 .

    Так решаются все неполные квадратные уравнения. Либо с помощью вынесения икса за скобки, либо простым переносом числа вправо с последующим извлечением корня.
    Спутать эти приёмы крайне сложно. Просто потому, что в первом случае вам придется корень из икса извлекать, что как-то непонятно, а во втором случае выносить за скобки нечего…

    Дискриминант. Формула дискриминанта.

    Волшебное слово дискриминант ! Редкий старшеклассник не слышал этого слова! Фраза «решаем через дискриминант» вселяет уверенность и обнадёживает. Потому что ждать подвохов от дискриминанта не приходится! Он прост и безотказен в обращении.) Напоминаю самую общую формулу для решения любых квадратных уравнений:

    Выражение под знаком корня называется дискриминантом. Обычно дискриминант обозначается буквой D . Формула дискриминанта:

    D = b 2 - 4ac

    И чем же примечательно это выражение? Почему оно заслужило специальное название? В чём смысл дискриминанта? Ведь -b, или 2a в этой формуле специально никак не называют... Буквы и буквы.

    Дело вот в чём. При решении квадратного уравнения по этой формуле, возможны всего три случая.

    1. Дискриминант положительный. Это значит, из него можно извлечь корень. Хорошо корень извлекается, или плохо – вопрос другой. Важно, что извлекается в принципе. Тогда у вашего квадратного уравнения – два корня. Два различных решения.

    2. Дискриминант равен нулю. Тогда у вас получится одно решение. Так как от прибавления-вычитания нуля в числителе ничего не меняется. Строго говоря, это не один корень, а два одинаковых . Но, в упрощённом варианте, принято говорить об одном решении.

    3. Дискриминант отрицательный. Из отрицательного числа квадратный корень не извлекается. Ну и ладно. Это означает, что решений нет.

    Честно говоря, при простом решении квадратных уравнений, понятие дискриминанта не особо-то и требуется. Подставляем в формулу значения коэффициентов, да считаем. Там всё само собой получается, и два корня, и один, и ни одного. Однако, при решении более сложных заданий, без знания смысла и формулы дискриминанта не обойтись. Особенно - в уравнениях с параметрами. Такие уравнения - высший пилотаж на ГИА и ЕГЭ!)

    Итак, как решать квадратные уравнения через дискриминант вы вспомнили. Или научились, что тоже неплохо.) Умеете правильно определять a, b и с . Умеете внимательно подставлять их в формулу корней и внимательно считать результат. Вы поняли, что ключевое слово здесь – внимательно?

    А теперь примите к сведению практические приёмы, которые резко снижают количество ошибок. Тех самых, что из-за невнимательности.… За которые потом бывает больно и обидно…

    Приём первый . Не ленитесь перед решением квадратного уравнения привести его к стандартному виду. Что это означает?
    Допустим, после всяких преобразований вы получили вот такое уравнение:

    Не бросайтесь писать формулу корней! Почти наверняка, вы перепутаете коэффициенты a, b и с. Постройте пример правильно. Сначала икс в квадрате, потом без квадрата, потом свободный член. Вот так:

    И опять не бросайтесь! Минус перед иксом в квадрате может здорово вас огорчить. Забыть его легко… Избавьтесь от минуса. Как? Да как учили в предыдущей теме! Надо умножить всё уравнение на -1. Получим:

    А вот теперь можно смело записывать формулу для корней, считать дискриминант и дорешивать пример. Дорешайте самостоятельно. У вас должны получиться корни 2 и -1.

    Приём второй. Проверяйте корни! По теореме Виета. Не пугайтесь, я всё объясню! Проверяем последнее уравнение. Т.е. то, по которому мы записывали формулу корней. Если (как в этом примере) коэффициент а = 1 , проверить корни легко. Достаточно их перемножить. Должен получиться свободный член, т.е. в нашем случае -2. Обратите внимание, не 2, а -2! Свободный член со своим знаком . Если не получилось – значит уже где-то накосячили. Ищите ошибку.

    Если получилось - надо сложить корни. Последняя и окончательная проверка. Должен получиться коэффициент b с противоположным знаком. В нашем случае -1+2 = +1. А коэффициент b , который перед иксом, равен -1. Значит, всё верно!
    Жаль, что это так просто только для примеров, где икс в квадрате чистый, с коэффициентом а = 1. Но хоть в таких уравнениях проверяйте! Всё меньше ошибок будет.

    Приём третий . Если в вашем уравнении есть дробные коэффициенты, - избавьтесь от дробей! Домножьте уравнение на общий знаменатель, как описано в уроке "Как решать уравнения? Тождественные преобразования". При работе с дробями ошибки, почему-то так и лезут…

    Кстати, я обещал злой пример с кучей минусов упростить. Пожалуйста! Вот он.

    Чтобы не путаться в минусах, домножаем уравнение на -1. Получаем:

    Вот и всё! Решать – одно удовольствие!

    Итак, подытожим тему.

    Практические советы:

    1. Перед решением приводим квадратное уравнение к стандартному виду, выстраиваем его правильно .

    2. Если перед иксом в квадрате стоит отрицательный коэффициент, ликвидируем его умножением всего уравнения на -1.

    3. Если коэффициенты дробные – ликвидируем дроби умножением всего уравнения на соответствующий множитель.

    4. Если икс в квадрате – чистый, коэффициент при нём равен единице, решение можно легко проверить по теореме Виета. Делайте это!

    Теперь можно и порешать.)

    Решить уравнения:

    8х 2 - 6x + 1 = 0

    х 2 + 3x + 8 = 0

    х 2 - 4x + 4 = 0

    (х+1) 2 + x + 1 = (x+1)(x+2)

    Ответы (в беспорядке):

    х 1 = 0
    х 2 = 5

    х 1,2 = 2

    х 1 = 2
    х 2 = -0,5

    х - любое число

    х 1 = -3
    х 2 = 3

    решений нет

    х 1 = 0,25
    х 2 = 0,5

    Всё сходится? Отлично! Квадратные уравнения - не ваша головная боль. Первые три получились, а остальные - нет? Тогда проблема не в квадратных уравнениях. Проблема в тождественных преобразованиях уравнений. Прогуляйтесь по ссылке, это полезно.

    Не совсем получается? Или совсем не получается? Тогда вам в помощь Раздел 555. Там все эти примеры разобраны по косточкам. Показаны главные ошибки в решении. Рассказывается, разумеется, и о применении тождественных преобразований в решении различных уравнений. Очень помогает!

    Если Вам нравится этот сайт...

    Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

    Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

    можно познакомиться с функциями и производными.

    С помощью этой математической программы вы можете решить квадратное уравнение .

    Программа не только даёт ответ задачи, но и отображает процесс решения двумя способами:
    - с помощью дискриминанта
    - с помощью теоремы Виета (если возможно).

    Причём, ответ выводится точный, а не приближенный.
    Например, для уравнения \(81x^2-16x-1=0\) ответ выводится в такой форме:

    $$ x_1 = \frac{8+\sqrt{145}}{81}, \quad x_2 = \frac{8-\sqrt{145}}{81} $$ а не в такой: \(x_1 = 0,247; \quad x_2 = -0,05 \)

    Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

    Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

    Если вы не знакомы с правилами ввода квадратного многочлена, рекомендуем с ними ознакомиться.

    Правила ввода квадратного многочлена

    В качестве переменной может выступать любая латинсая буква.
    Например: \(x, y, z, a, b, c, o, p, q \) и т.д.

    Числа можно вводить целые или дробные.
    Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

    Правила ввода десятичных дробей.
    В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
    Например, можно вводить десятичные дроби так: 2.5x - 3,5x^2

    Правила ввода обыкновенных дробей.
    В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

    Знаменатель не может быть отрицательным.

    При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
    Целая часть отделяется от дроби знаком амперсанд: &
    Ввод: 3&1/3 - 5&6/5z +1/7z^2
    Результат: \(3\frac{1}{3} - 5\frac{6}{5} z + \frac{1}{7}z^2 \)

    При вводе выражения можно использовать скобки . В этом случае при решении квадратного уравнения введённое выражение сначала упрощается.
    Например: 1/2(y-1)(y+1)-(5y-10&1/2)


    Решить

    Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
    Возможно у вас включен AdBlock.
    В этом случае отключите его и обновите страницу.

    У вас в браузере отключено выполнение JavaScript.
    Чтобы решение появилось нужно включить JavaScript.
    Вот инструкции, как включить JavaScript в вашем браузере .

    Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
    Через несколько секунд решение появится ниже.
    Пожалуйста подождите сек...


    Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
    Не забудьте указать какую задачу вы решаете и что вводите в поля .



    Наши игры, головоломки, эмуляторы:

    Немного теории.

    Квадратное уравнение и его корни. Неполные квадратные уравнения

    Каждое из уравнений
    \(-x^2+6x+1,4=0, \quad 8x^2-7x=0, \quad x^2-\frac{4}{9}=0 \)
    имеет вид
    \(ax^2+bx+c=0, \)
    где x - переменная, a, b и c - числа.
    В первом уравнении a = -1, b = 6 и c = 1,4, во втором a = 8, b = -7 и c = 0, в третьем a = 1, b = 0 и c = 4/9. Такие уравнения называют квадратными уравнениями .

    Определение.
    Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где x - переменная, a, b и c - некоторые числа, причём \(a \neq 0 \).

    Числа a, b и c - коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b - вторым коэффициентом и число c - свободным членом.

    В каждом из уравнений вида ax 2 +bx+c=0, где \(a \neq 0 \), наибольшая степень переменной x - квадрат. Отсюда и название: квадратное уравнение.

    Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.

    Квадратное уравнение, в котором коэффициент при x 2 равен 1, называют приведённым квадратным уравнением . Например, приведёнными квадратными уравнениями являются уравнения
    \(x^2-11x+30=0, \quad x^2-6x=0, \quad x^2-8=0 \)

    Если в квадратном уравнении ax 2 +bx+c=0 хотя бы один из коэффициентов b или c равен нулю, то такое уравнение называют неполным квадратным уравнением . Так, уравнения -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 - неполные квадратные уравнения. В первом из них b=0, во втором c=0, в третьем b=0 и c=0.

    Неполные квадратные уравнения бывают трёх видов:
    1) ax 2 +c=0, где \(c \neq 0 \);
    2) ax 2 +bx=0, где \(b \neq 0 \);
    3) ax 2 =0.

    Рассмотрим решение уравнений каждого из этих видов.

    Для решения неполного квадратного уравнения вида ax 2 +c=0 при \(c \neq 0 \) переносят его свободный член в правую часть и делят обе части уравнения на a:
    \(x^2 = -\frac{c}{a} \Rightarrow x_{1,2} = \pm \sqrt{ -\frac{c}{a}} \)

    Так как \(c \neq 0 \), то \(-\frac{c}{a} \neq 0 \)

    Если \(-\frac{c}{a}>0 \), то уравнение имеет два корня.

    Если \(-\frac{c}{a} Для решения неполного квадратного уравнения вида ax 2 +bx=0 при \(b \neq 0 \) раскладывают его левую часть на множители и получают уравнение
    \(x(ax+b)=0 \Rightarrow \left\{ \begin{array}{l} x=0 \\ ax+b=0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x=0 \\ x=-\frac{b}{a} \end{array} \right. \)

    Значит, неполное квадратное уравнение вида ax 2 +bx=0 при \(b \neq 0 \) всегда имеет два корня.

    Неполное квадратное уравнение вида ax 2 =0 равносильно уравнению x 2 =0 и поэтому имеет единственный корень 0.

    Формула корней квадратного уравнения

    Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.

    Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого квадратного уравнения.

    Решим квадратное уравнение ax 2 +bx+c=0

    Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение
    \(x^2+\frac{b}{a}x +\frac{c}{a}=0 \)

    Преобразуем это уравнение, выделив квадрат двучлена:
    \(x^2+2x \cdot \frac{b}{2a}+\left(\frac{b}{2a}\right)^2- \left(\frac{b}{2a}\right)^2 + \frac{c}{a} = 0 \Rightarrow \)

    \(x^2+2x \cdot \frac{b}{2a}+\left(\frac{b}{2a}\right)^2 = \left(\frac{b}{2a}\right)^2 - \frac{c}{a} \Rightarrow \) \(\left(x+\frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{c}{a} \Rightarrow \left(x+\frac{b}{2a}\right)^2 = \frac{b^2-4ac}{4a^2} \Rightarrow \) \(x+\frac{b}{2a} = \pm \sqrt{ \frac{b^2-4ac}{4a^2} } \Rightarrow x = -\frac{b}{2a} + \frac{ \pm \sqrt{b^2-4ac} }{2a} \Rightarrow \) \(x = \frac{ -b \pm \sqrt{b^2-4ac} }{2a} \)

    Подкоренное выражение называют дискриминантом квадратного уравнения ax 2 +bx+c=0 («дискриминант» по латыни - различитель). Его обозначают буквой D, т.е.
    \(D = b^2-4ac \)

    Теперь, используя обозначение дискриминанта, перепишем формулу для корней квадратного уравнения:
    \(x_{1,2} = \frac{ -b \pm \sqrt{D} }{2a} \), где \(D= b^2-4ac \)

    Очевидно, что:
    1) Если D>0, то квадратное уравнение имеет два корня.
    2) Если D=0, то квадратное уравнение имеет один корень \(x=-\frac{b}{2a} \).
    3) Если D Таким образом, в зависимости от значения дискриминанта квадратное уравнение может иметь два корня (при D > 0), один корень (при D = 0) или не иметь корней (при D При решении квадратного уравнения по данной формуле целесообразно поступать следующим образом:
    1) вычислить дискриминант и сравнить его с нулём;
    2) если дискриминант положителен или равен нулю, то воспользоваться формулой корней, если дискриминант отрицателен, то записать, что корней нет.

    Теорема Виета

    Приведённое квадратное уравнение ax 2 -7x+10=0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.

    Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

    Т.е. теорема Виета утверждает, что корни x 1 и x 2 приведённого квадратного уравнения x 2 +px+q=0 обладают свойством:
    \(\left\{ \begin{array}{l} x_1+x_2=-p \\ x_1 \cdot x_2=q \end{array} \right. \)

    Среди всего курса школьной программы алгебры одной из самых объемных тем является тема о квадратных уравнениях. При этом под квадратным уравнением понимается уравнение вида ax 2 + bx + c = 0, где a ≠ 0 (читается: а умножить на икс в квадрате плюс бэ икс плюс цэ равно нулю, где а неравно нулю). При этом основное место занимают формулы нахождения дискриминанта квадратного уравнения указанного вида, под которым понимается выражение, позволяющее определить наличие или отсутствие корней у квадратного уравнения, а также их количество (при наличии).

    Формула (уравнение) дискриминанта квадратного уравнения

    Общепринятая формула дискриминанта квадратного уравнения выглядит следующим образом: D = b 2 – 4ac. Вычисляя дискриминант по указанной формуле, можно не только определить наличие и количество корней у квадратного уравнения, но и выбрать способ нахождения этих корней, которых существует несколько в зависимости от типа квадратного уравнения.

    Что значит если дискриминант равен нулю \ Формула корней квадратного уравнения если дискриминант равен нулю

    Дискриминант, как следует из формулы, обозначается латинской буквой D. В случае, когда дискриминант равен нулю, следует сделать вывод, что квадратное уравнение вида ax 2 + bx + c = 0, где a ≠ 0, имеет только один корень, который вычисляется по упрощенной формуле. Данная формула применяется только при нулевом дискриминанте и выглядит следующим образом: x = –b/2a, где х – корень квадратного уравнения, b и а – соответствующие переменные квадратного уравнения. Для нахождения корня квадратного уравнения необходимо отрицательное значение переменной b разделить на удвоенное значение переменной а. Полученной выражение будет решением квадратного уравнения.

    Решение квадратного уравнения через дискриминант

    Если при вычислении дискриминанта по вышеприведенной формуле получается положительное значение (D больше нуля), то квадратное уравнение имеет два корня, которые вычисляются по следующим формулам: x 1 = (–b + vD)/2a, x 2 = (–b – vD)/2a. Чаще всего, дискриминант отдельно не высчитывается, а в значение D, из которого извлекается корень, просто подставляется подкоренное выражение в виде формулы дискриминанта. Если переменная b имеет четное значение, то для вычисления корней квадратного уравнения вида ax 2 + bx + c = 0, где a ≠ 0, можно также использовать следующие формулы: x 1 = (–k + v(k2 – ac))/a, x 2 = (–k + v(k2 – ac))/a, где k = b/2.

    В некоторых случаях для практического решения квадратных уравнений можно использовать Теорему Виета, которая гласит, что для суммы корней квадратного уравнения вида x 2 + px + q = 0 будет справедливо значение x 1 + x 2 = –p, а для произведения корней указанного уравнения – выражение x 1 x x 2 = q.

    Может ли дискриминант быть меньше нуля

    При вычислении значения дискриминанта можно столкнуться с ситуацией, которая не попадает ни под один из описанных случаев – когда дискриминант имеет отрицательное значение (то есть меньше нуля). В этом случае принято считать, что квадратное уравнение вида ax 2 + bx + c = 0, где a ≠ 0, действительных корней не имеет, следовательно, его решение будет ограничиваться вычислением дискриминанта, а приводимые выше формулы корней квадратного уравнения в данном случае применяться не будут. При этом в ответе к квадратному уравнению записывается, что «уравнение действительных корней не имеет».

    Поясняющее видео:

    Просто. По формулам и чётким несложным правилам. На первом этапе

    надо заданное уравнение привести к стандартному виду, т.е. к виду:

    Если уравнение вам дано уже в таком виде - первый этап делать не нужно. Самое главное - правильно

    определить все коэффициенты, а , b и c .

    Формула для нахождения корней квадратного уравнения.

    Выражение под знаком корня называется дискриминант . Как видим, для нахождения икса, мы

    используем только a, b и с . Т.е. коэффициенты из квадратного уравнения . Просто аккуратно подставляем

    значения a, b и с в эту формулу и считаем. Подставляем со своими знаками!

    Например , в уравнении:

    а =1; b = 3; c = -4.

    Подставляем значения и записываем:

    Пример практически решён:

    Это ответ.

    Самые распространённые ошибки - путаница со знаками значений a, b и с . Вернее, с подстановкой

    отрицательных значений в формулу для вычисления корней. Здесь спасает подробная запись формулы

    с конкретными числами. Если есть проблемы с вычислениями, так и делайте!

    Предположим, надо вот такой пример решить:

    Здесь a = -6; b = -5; c = -1

    Расписываем все подробно, внимательно, ничего не упуская со всеми знаками и скобками:

    Часто квадратные уравнения выглядят слегка иначе. Например, вот так:

    А теперь примите к сведению практические приёмы, которые резко снижают количество ошибок.

    Приём первый . Не ленитесь перед решением квадратного уравнения привести его к стандартному виду.

    Что это означает?

    Допустим, после всяких преобразований вы получили вот такое уравнение:

    Не бросайтесь писать формулу корней! Почти наверняка, вы перепутаете коэффициенты a, b и с.

    Постройте пример правильно. Сначала икс в квадрате, потом без квадрата, потом свободный член. Вот так:

    Избавьтесь от минуса. Как? Надо умножить всё уравнение на -1. Получим:

    А вот теперь можно смело записывать формулу для корней, считать дискриминант и дорешивать пример.

    Дорешайте самостоятельно. У вас должны получиться корни 2 и -1.

    Приём второй. Проверяйте корни! По теореме Виета .

    Для решения приведённых квадратных уравнений, т.е. если коэффициент

    x 2 +bx+c=0,

    тогда x 1 x 2 =c

    x 1 +x 2 =− b

    Для полного квадратного уравнения, в котором a≠1 :

    x 2 + b x+ c =0,

    делим все уравнение на а:

    где x 1 и x 2 - корни уравнения.

    Приём третий . Если в вашем уравнении есть дробные коэффициенты, - избавьтесь от дробей! Домножьте

    уравнение на общий знаменатель.

    Вывод. Практические советы:

    1. Перед решением приводим квадратное уравнение к стандартному виду, выстраиваем его правильно .

    2. Если перед иксом в квадрате стоит отрицательный коэффициент, ликвидируем его умножением всего

    уравнения на -1.

    3. Если коэффициенты дробные - ликвидируем дроби умножением всего уравнения на соответствующий

    множитель.

    4. Если икс в квадрате - чистый, коэффициент при нём равен единице, решение можно легко проверить по