Войти
Логопедический портал
  • Богуславский, михаил соломонович
  • Михаил девятаев Девятаев михаил петрович герой советского
  • День, когда началась война
  • История зарождения и становления русской гвардии
  • Формула силы по закону гука
  • Как понять с какой платформы отправляется поезд
  • Насыщенные альдегиды и кетоны получение. Кетоны. Отдельные представители альдегидов

    Насыщенные альдегиды и кетоны получение. Кетоны. Отдельные представители альдегидов

    Т омский государственный университет

    кафедра органической химии

    Альдегиды и кетоны

    Альдегиды и кетоны отличаются наличием карбонильной группы=О.

    Карбонильная группа поляризована по связи С-О :

    Альдегиды и кетоны можно рассматривать, как производные алканов , у которых одна из метильных (-СН 3 ) или метиленовых групп (-СН 2 - ) заменена на карбонильную группу:


    Кетоны имеют в качестве заместителей при карбонильной группе два алкильных радикала, тогда как в альдегидах один заместитель- алкильная группа, другой- водород. Такое различие приводит к существенным различиям в химических свойствах (см . ниже).

    Номенклатура

    Номенклатура IUPAC

    При наименовании альдегидов и кетонов по правилам номенклатуры ИЮПАК выбирается самая длинная цепь углеродов, включающая в себе карбонильную группу. Нумерация атомов углерода в этой цепи производится с того края, куда ближе карбонильная группа, а при формировании названия к названию углеводорода, соответствующему числу атомов углерода в основной цепи (1-метан, 2- этан, 3-пропан, 4-бутан, 5 –пентан и т.д.) прибавляется окончание ль (для альдегидов) или -он для кетонов.

    Положение карбонильной группы у кетонов указывается через тире, если возможно существование нескольких изомеров. Положение карбонильной группы альдегидов не указывается цифрой, поскольку во всех случаях она оказывается под первым номером:


    Рациональная номенклатура

    Кетоны часто называют по радикалам, соединенным через карбонильную группу, с добавлением слова кетон . Например, гексанон-3 или метилэтилкетон , ацетон или диметилкето н .

    Альдегиды могут быть названы, как производные этаналя или уксусного альдегида:

    Другое название- триметилэтаналь .

    Химические свойства карбонильных соединений

    Все реакции карбонильных соединений можно разделить на группы:

    Реакции по карбонильной группе (присоединение)

    Реакции по углеродному скелету

    Реакции окисления

    Реакции восстановления

    Реакции присоединения по карбонильной группе (присоединение нуклеофильных реагентов)

    1. присоединение воды

    Образующиеся гем-диолы неустойчивы и равновесие в этой реакции сильно смещено влево. Исключение составляют альдегиды и кетоны с электроноакцепторными группами, например, хлораль или гексафторацетон , которые в водной среде существуют в виде гем-диолов :

    2. присоединение бисульфита

    Присоединение идет через более нуклеофильный атом серы, а не кислорода, хотя на нем и имеется отрицательный заряд. Образуются производные алкансульфокислот (соли алканоксисульфокислот ).

    Образующиеся аддукты нерастворимы в насыщенном растворе бисульфита натрия или спиртах и выпадают в осадок в виде кристаллов. Так можно отделять карбонильные соединения из смеси со спиртами. Карбонильное соединение выделяется в свободном виде из аддукта при обработке его кислотой.

    При реакции с кетонами бисульфиты присоединяются только к метилкетонам СН 3 -СО-R .

    3. присоединение цианидов

    Реакция катализируется цианистым калием или натрием. Образующиеся оксинитрилы (или циангидрины ) могут быть гидролизованы до оксикарбоновых кислот:

    4. присоединение спиртов

    При присоединении первой молекулы спирта образуются полуацетали . Реакция катализируется кислотами или основаниями:

    Присоединение второй молекулы спирта приводит к образованию ацеталей . Образование ацеталей катализируется только в кислой среде:


    Ацетали устойчивы в нейтральной и щелочной среде, поэтому могут быть использованы для временной защиты альдегидных групп. Ацетали широко распространены в природе.

    5. присоединение реактивов Гриньяра

    Взаимодействие металлорганических соединений типа R-Mg-X (реактивы Гриньяра ), где Х= галоген, с карбонильными группами(нуклеофильное присоединение по кратной связи С =О):


    Взаимодействие с формальдегидом, альдегидами, кетонами - приводит к первичным, вторичным и третичным спиртам, соответственно.


    Из кетонов получаются третичные спирты. Так, из метилэтилкетона (бутанон-2) получается 2-метилбутанол-2. Альдегиды в подобной реакции дают вторичные спирты. Из пропионового альдегида (пропаналь ) получается бутанол-2:


    Из формальдегида образуются первичные спирты. При взаимодействии реактивов Гриньяра с галогенангидридами карбоновых кислот и сложными эфирами образуются третичные спирты, у которых имеется два одинаковых алкильных заместителя. При этом расходуется два моля реактива Гриньяра :


    6. Присоединение аммиака и аминов

    Первичные амины присоединяются к альдегидам и кетонам с образованием иминов (оснований Шиффа :


    Аналогичная реакция вторичных аминов с карбонильными соединениями дает енамины :


    С карбонильными соединениями могут вступать во взаимодействие также гидразин и его производные с образованием гидразонов :


    Гидроксиламины присоединяются к альдегидам и кетонам с образованием альдоксимов и кетоксимов :


    7. Альдольно-кротоновая конденсация

    Конденсация может происходить как в кислой среде, так и в щелочной.

    Катализируемая кислотой конденсация

    В конденсацию вступают енол и протонированная карбонильная группа второй молекулы соединения:

    Конденсация, катализируемая основанием

    Образование енолят-иона , генерирующего карбанион , протекает по схеме:

    Далее карбанион присоединяется к карбонильной группе второй молекулы, причем протекает С-алкилирование , в отличие от термодинамически невыгодного О- алкилирования :

    Образующийся альдегидоспирт (альдоль ) легко теряет воду в присутствии каталитических количеств оснований или кислот, а также при незначительном нагревании, с образованием a ,b - ненасыщенного карбонильного соединения, этим завершается реакция конденсации (R ,Х= алкил или Н):

    Таким образом, в реакцию альдольно - кротоновой конденсации (в том числе и самоконденсации ) могут вступать как альдегиды, так и кетоны, имеющие альфа-углеродные атомы водорода. В случае кетонов положение равновесия невыгодно для образования продуктов, тем не менее, проводя реакцию в особых условиях (например, исключая контакт продукта с катализатором основного характера) можно добиваться существенных выходов. Перекрестные реакции между альдегидами и кетонами не имеют лабораторного применения, поскольку образуется трудноразделяемая смесь из четырех продуктов и непрореагировавших исходных соединений. Чаще в синтетических целях проводят реакцию между двумя карбонильными соединениями, одно из которых является источником карбанионов (метиленовая компонента ), а другое служит карбонильной компонентой (не имеющей альфа-углеродных атомов водорода). Обычно в роли карбонильной компоненты используются формальдегид, ароматические альдегиды, эфиры угольной, щавелевой и муравьиной кислот. В качестве метиленовой компоненты применяют в том числе и С-Н кислоты и даже производные ацетиленовых углеводородов с концевой тройной связью.

    8. Реакция Канниццаро

    Альдегиды, не имеющие альфа-углеродных атомов водорода при нагревании с сильными основаниями вступают в реакцию окисления-восстановления, когда одна из молекул восстанавливается до спирта за счет окисления второй молекулы до карбоновой кислоты. Такие реакции носят название реакции Канниццаро , и протекают по схеме:


    Известны и внутримолекулярные реакции окисления-восстановления:

    C воеобразной разновидностью внутримолекулярного окисления-восстановления является Бензиловая перегруппировка :

    Реакции по углеродному скелету альдегидов и кетонов

    Реакции, затрагивающие углеродный скелет, включают:

    Кето-енольная таутомерия альдегидов и кетонов;

    Галогенирование (галоформная реакция и замещение a - углеродных атомов водорода)

    1. Кето-енольная таутомерия

    Карбонильные соединения могут сосуществовать в двух формах- кетонной и енольной :


    Превращения альдегидов и кетонов в енолы (непредельные спирты) протекает как самопроизвольно, так и с катализом кислотами и основаниями. Енольные формы хоть и присутствуют в альдегидах и кетонах в незначительных концентрациях, но роль в их реакционной способности играют существенную. Через образование енолов идет целый ряд важных реакций альдегидов и кетонов. Рассмотрим механизмы перехода кетонных форм в енольные , протекающие при каталитическом действии кислот и оснований.

    Енолизация , катализируемая кислотой

    Образование енола может катализироваться кислотой согласно нижеприведенной схеме (R "= алкил или Н):

    Реакция начинается с протонирования атома кислорода карбонильной группы и завершается отщеплением протона уже от альфа-углеродного атома. Таким образом, формально протон играет роль катализатора.

    Енолизация , катализируемая основанием

    Образование енолят-иона протекает по схеме:

    В образовании енолов при катализе основаниями важную роль играет кислотность альфа- углеродных атомов водорода. Их повышенная кислотность связана с близким соседством с карбонильной группой и ее отрицательным индуктивным эффектом, оттягивающим электроны связи С-Н и облегчающим таким образом отщепление протона. Другими словами, отщепление протона облегчено потому, что образующийся карбанион стабилизирован делокализацией отрицательного заряда на карбонильную группу.

    К образовавшимся енолам присоединяются галогены по кратной связи С =С. Только в отличие от алкенов , где такое присоединение завершается полным связыванием галогена, у альдегидов и кетонов присоединяется только один атом галогена (на соседний с карбонильной группой углерод). Второй атом галогена (на карбонильную группу) не присоединяется, а реакция завершается отщеплением протона и регенерацией карбонильной группы:

    В кислой среде реакция на этом и останавливается. Замещения второго атома водорода на галоген не происходит. А вот в щелочной среде происходит быстрая реакция замещения второго, и еще более быстрая реакция замещения третьего атома углерода на галоген (увеличение числа атомов галогена при углероде резко усиливает кислотность его водородов):

    В конечном итоге все три атома водорода оказываются замещены на галогены, после чего следует отщепление группировки СХ 3 в виде аниона, с последующим немедленным обменом протоном:

    В результате образуется тригалогенметан , называемый галоформом (иодоформ CHJ 3 , бромоформ CHBr 3 , хлороформ CHCl 3) и анион карбоновой кислоты. А сам процесс называется галоформной реакцией. Галоформной реакции подвержены любые метилкетоны . Галоформы выпадают в виде окрашенного осадка (желтый иодоформ ), имеют специфический запах и могут служить качественной реакцией на присутствие метилкетонов . Галоформную реакцию дают также спирты, при окислении которых могут образоваться метилкетоны (например, изопропанол ). Окисление осуществляется избыточным количеством галогена.

    Окисление альдегидов и кетонов

    Альдегиды легко окисляются до соответствующих кислот:


    Кетоны окисляются с трудом, в жестких условиях. Окисление сопровождается разрывом С-С связи по соседству с карбонильной группой. В результате получается набор продуктов окисления- карбоновые кислоты с разной длиной углеродной цепи:


    Методы получения

    1. Окислением первичных спиртов получают альдегиды, а вторичные спирты дают кетоны:


    Окисление можно осуществлять «сухим» и «мокрым» методами. Первый заключается в пропускании паров спирта через нагретую до 300-350 С окись меди CuO . «Мокрым» методом называется окисление спиртов подкисленным раствором бихромата калия или натрия:

    При окислении «мокрым» методом образующийся альдегид следует отгонять из сферы реакции, в противном случае он легко окисляется дальше, до карбоновой кислоты:

    2. Альдегиды и кетоны получаются при гидролизе гем-дигалогеналканов



    Вначале происходит замещение двух атомов галогена на гидроксильные группы. Но неустойчивые гем-диолы быстро перегруппировываются в карбонильные соединения с отщеплением молекулы воды:


    3. Озонолиз алкенов

    приводит к образованию смесей альдегидов и кетонов, в зависимости от строения исходного алкена :

    На первом этапе озонирования получается озонид , при разложении которого водой образуются карбонильные соединения и перекись водорода. Чтобы перекись не спровоцировала дальнейшее окисление альдегидов, в воду при разложении озонидов добавляют цинковую пыль. Озонирование алкенов имеет целью не столько синтез альдегидов и кетонов, сколько определение места положения кратной связи:


    4. Присоединение воды к алкинам

    Присоединение воды к тройной связи в присутствии солей ртути приводит в случае ацетилена к уксусному альдегиду, а в случае замещенных ацетиленов- к кетонам. Вода присоединяется по правилу Марковникова :

    Альдегиды и кетоны - производные углеводородов, в которых содержится одна или более карбонильных групп $C = O$ (оксогрупп). Альдегидами называются соединения, в которых карбонильная группа соединена с углеводородным остатком и водородом, кетонами - если она соединена с двумя углеводородными остатками (при этом группу $C = O$ называют еще кетогруппой):

    Альдегиды и кетоны относятся к группе карбонильных соединений.

    В зависимости от строения углеводородного радикала альдегиды и кетоны разделяют на алифатические, алициклические и ароматические. Среди алифатических альдегидов и кетонов различают насыщенные и ненасыщенные.

    Изомерия альдегидов связана со строением углеводородного остатка, а кетонов - дополнительно положению $C = O$ группы.

    Физические свойства

    Определение 1

    Насыщенные альдегиды и кетоны - это бесцветные жидкости, кроме формальдегида, который при нормальных условиях является газом. Они характеризуются резким запахом. Температуры их кипения ниже, чем у спиртов, так как для альдегидов и кетонов проявления водородной связи не характерно, причем кетоны кипят при более высокой температуре, чем альдегиды с одинаковым количеством атомов углерода.

    Муравьиный и уксусный альдегиды, а также кетоны с небольшой молекулярной массой растворимые в воде. При увеличении молекулярной массы растворимость этих веществ в воде уменьшается. Все альдегиды и кетоны хорошо растворяются в органических растворителях (спирте, эфире и т.п.).

    Считают, что карбонильная группа -осмофор, то есть носитель запаха. Муравьиный альдегид имеет довольно резкий запах. Другие ниже альдегиды имеют удушающий запах, который при сильном разбавления становится приятным и напоминает запах овощей и фруктов. Кетоны пахнут довольно приятно.

    Электронное строение карбонильной группы

    Вследствие различной электроотрицательности атомов углерода и кислорода карбонильная группа имеет высокую полярность (μ $\sim$ $2,5 D$ для альдегидов и $2,7 D$ для кетонов) и значительную способность к поляризуемости. Например, значение молекулярной рефракции $MR$ для оксогруппы равна примерно 3,4, тогда как для одинарной $C-O$-связи всего 1,5.

    Двойная связь карбонильной группы состоит, как и для алкенов, из σ- и π-связей:

    Рисунок 2. Двойная связь карбонильной группы. Автор24 - интернет-биржа студенческих работ

    Особенность карбонильной группы заключается в заметной разнице электроотрицательности атомов, ее образующих. Атом кислорода имеет внешнее строение $1s^22s^22p^4$ с распредилением 4х $p$-электронов по отдельным $x,y,z$ подуровням, но окончательно проблема его гибридизации не решена.

    Предполагают существование неэквивалентных гибридных орбиталей со значительным $p$-характером типа $s^n p^m$, где $n$ стремиться к 1, $m$ стремиться к 2, то есть, σ-связь $C-O$ вероятнее всего образуется при перекрытии $sp^{2_-}$-гибридной орбитали углерода и $2p_x - AO$ кислорода. $n$-связь образуется при взаимодействии негибридизованои $2p_x - AO$ углерода и $2p_x - AO$ кислорода.

    Две остаточные пары $n$-элетронов $2s^2$ и ${2p^2}_y$ атома кислорода существенно на химические свойства карбонильной группы не влияют.

    Ниже приведена структура простейшего альдегида - формальдегида с данными валентных углов и длин связей.

    Рисунок 3. Структура простейшего альдегида. Автор24 - интернет-биржа студенческих работ

    длина связи, $C=O$ 1,203 $C-H$ 1,101

    валентный угол, ${}^\circ$ $H-C=O$ 121,8 $H-C-H$ 116,5

    Вследствие полярности связей $C = O$ атом углерода приобретает положительный эффективного заряда, и его называют электрофильным центром, а кислород - отрицательного заряда, и его называют нуклеофильного центром. Поэтому атом углерода взаимодействует с нуклеофилами, что является основным взаимодействием $C=O$-группы альдегидов и кетонов в химических реакциях, а кислород - с электрофилами. Заместители акцепторного действия, которые увеличивают положительный заряд на атоме углерода карбонильной группы, значительно повышают ее реакционную способность. Противоположный эффект наблюдается при донорном действии заместителей:

    Рисунок 4. Донорное действие заместителей. Автор24 - интернет-биржа студенческих работ

    Итак, альдегиды и кетоны, с одной стороны, проявляют значительные электрофильные свойства, а с другой - слабые нуклеофильные, подобно спиртам и эфирам.

    Альдегиды проявляют большую химическую активность по сравнению с кетонами в результате двух основных факторов. Во-первых, при наличии второго углеводородного остатка $R$ возникают стерические препятствия при атаке нуклеофилом электрофильного центра. Во-вторых, заместитель $R$ с $+I$-эффектом уменьшает положительный заряд на электрофильном атоме углерода карбонильной группы и увеличивает отрицательный заряд на атоме кислорода. В результате ослабляется способность карбонильной группы к реакциям с нуклеофильными реагентами.

    Энергия связи $C = O$ равна 680-760 кДж / моль (для сравнения энергия двойной связи $E_{C=C}$ составляет 590-640 кДж / моль), но благодаря высокой полярности и поляризуемости карбонильная группа более реакционноспособна, чем углерод-углеродная кратная связь.

    Спектральные характеристики альдегидов и кетонов

    В УФ-спектрах карбонильные соединения имеют интенсивную полосу поглощения -185 нм вследствие π-π-перехода и слабоинтенсивну 270-300 нм благодаря n-π -перехода:

    Рисунок 5. УФ-спектры: бензальдегида (I), анилина (II) и фторбензола (III). Автор24 - интернет-биржа студенческих работ

    В ИК-области спектра наблюдаются интенсивные валентные колебания карбонильной группы $v_{C=O}$ в диапазоне 1850-1650 см $^{-1}$, поэтому ИК-спектроскопия является надежным методом ее определения.

    В случае ПМР-спектроскопии для альдегидной группы существует характерный сигнал протона при 8,5-11,0 м.ч., который также является надежным критерием его наличии у карбонильной группы.

    Органические ЛС

    Мы изучаем ЛС, поделенные на группы в соответствии с химической классификацией. Достоинством этой классификации является возможность выявления и исследования общих закономерностей при разработке методов получения препаратов, составляющих группу, методов фармацевтического анализа, основанных на физических и химических свойствах веществ, установления связи между химической структурой и фармакологическим действием.

    Все ЛВ делятся на неорганические и органические. Неорганические, в свою очередь, классифицируются в соответствии с положением элементов в ПС. А органические – делятся на производные алифатического, алициклического, ароматического и гетероциклического ряда, каждый из которых подразделяется по классам: углеводороды, галогенпроизводные углеводородов, спирты, альдегиды, кетоны, кислоты, эфиры простые и сложные и т.д.

    АЛИФАТИЧЕСКИЕ СОЕДИНЕНИЯ, КАК ЛС.

    Препараты альдегидов и их производных. Углеводы

    Альдегиды

    К этой группе соединений относятся органические лекарственные вещества, содержащие альдегидную группу, или их функциональные производные.

    Общая формула:

    Фармакологические свойства

    Введение альдегидной группы в структуру органического соединения сообщает ему наркотическое и антисептическое действие. В этом действие альдегидов сходно с действием спиртов. Но в отличие от спиртовой, альдегидная группа усиливает токсичность соединения.

    Факторы влияния строения на фармакологическое действие :

      удлинение алкильного радикала повышает активность, но одновременно растет токсичность;

      такой же эффект имеет введение непредельной связи и галогенов;

      к снижению токсичности приводит образование гидратной формы альдегида. Но способность к образованию устойчивой гидратной формы проявляется только у хлорпроизводных альдегидов. Так, формальдегид является протоплазматическим ядом, используется для дезинфекции, уксусный альдегид и хлораль не применяются в медицине из-за высокой токсичности, а хлоралгидрат – ЛС, применяется как снотворное, успокоительное.

    Сила наркотического (фармакологического) действия и токсичность росли от формальдегида к ацетальдегиду и хлоралю. Образование гидратной формы (хлоралгидрат) позволяет резко снизить токсичность, сохранив фармакологический эффект.

    По физическому состоянию альдегиды могут быть газообразными (низкомолекулярные), жидкостями и твердыми веществами . Низкомолекулярные имеют резкий неприятный запах, высокомолекулярные – приятный цветочный.

    Химические свойства

    В химическом отношении это высоко реакционноспособные вещества, что обусловлено наличием в их молекуле карбонильной группы.

    Высокая реакционная способность альдегидов объясняется:

    а) наличием поляризованной двойной связи

    б) дипольным моментом карбонила

    в) наличием частичного положительного заряда на атоме углерода карбонила

    σ -

    σ + H

    Двойная связь между С и О, в отличие от двойной связи между двумя углеродами, сильно поляризована, так как кислород обладает значительно большей электроотрицательностью, чем углерод, и электронная плотность π-связи смещается к кислороду. Такая высокая поляризация определяет электрофильные свойства углерода карбонильной группы и его способность реагировать с нуклеофильными соединениями (вступать в реакции нуклеофильного присоединения). Кислород группы обладает нуклеофильными свойствами.

    Характерны реакции окисления и нуклеофильного присоединения

    I. Реакции окисления.

    Альдегиды легко окисляются . Окисление альдегидов до кислот происходит под влиянием как сильных, так и слабых окислителей .

    Многие металлы – серебро, ртуть, висмут, медь, восстанавливаются из растворов их солей, особенно в присутствии щелочи. Это отличает альдегиды от других органических соединений, способных к окислению – спиртов, непредельных соединений, для окисления которых необходимы более сильные окислители. Следовательно, реакции окисления альдегидов комплексно связанными катионами ртути, меди, серебра в щелочной среде можно применять для доказательства подлинности альдегидов.

    I. 1 .Реакция с аммиачным раствором нитрата серебра (реакция серебряного зеркала) рекомендуется ФС для подтверждения подлинности веществ с альдегидной группой.В основе окисление альдегида до кислоты и восстановление Ag + до Ag↓.

    AgNO 3 + 2NH 4 OH → NO 3 +2H 2 O

    НСОН + 2NO 3 + H 2 O → HCOONH 4 + 2Ag↓+ 2NH 4 NO 3 + NH 3

    Формальдегид, окисляясь до аммонийной соли муравьиной кислоты, восстанавливает до металлического серебро, которое осаждается на стенках пробирки в виде блестящего налета «зеркала» или серого осадка.

    I. 2. Реакция с реактивом Фелинга (комплексное соединение меди (II) с калий-натриевой солью винной кислоты). Альдегиды восстанавливают соединение меди (II) до оксида меди (I), образуется кирпично-красный осадок. Готовят перед употреблением).

    реактив Феллинга 1 - раствор CuSO 4

    реактив Феллинга 2 – щелочной раствор калий-натриевой соли винной кислоты

    При смешавании 1:1 реактивов Феллинга 1 и 2 образуется синее комплексное соединение меди (II ) с калий-натриевой солью винной кислоты:

    синее окрашивание

    При добавлении альдегида и нагревании синее окрашивание реактива исчезает, образуется промежуточный продукт - желтый осадок гидроксида меди (I), сразу разлагающийся на красный осадок оксида меди (I) и воду.

    2KNa +R - COH +2NaOH+ 2KOH→R - COONa +4KNaC 4 H 4 O 6 +2 CuOH +H 2 O

    2 CuOH Cu 2 O + H 2 O

    Желтый осадок кирпично-красный осадок

    В учебниках иная общая схема реакции

    I. 3. Реакция с реактивом Несслера (щелочной раствор тетрайодмеркурат (II) калия). Формальдегид восстанавливает ион ртути до металлической ртути – осадок темно-серого цвета.

    R-COH + K 2 +3KOH → R-COOK + 4KI + Hg + 2H 2 O

    В присутствии минеральных кислот альдегиды и кетоны реагируют с одним или двумя молями спирта:

    Если взять карбонильное соединение и избыток спирта, то равновесие будет сдвинуто вправо и будет образовываться ацеталь или кеталь. Напротив, при нагревании ацеталей и кеталей с избытком воды в кислой среде происходит гидролиз с образованием альдегида или кетона:

    Во втором примере обе гидроксильные группы, участвующие в образовании кеталя, находились в одной молекуле спирта -этандиола), поэтому кеталь имеет циклическое строение.

    Сравнительно инертные ацетали и кетали используются как защитные группы для защиты карбонильной группы от нежелательных реакций в ходе многостадийного синтеза. Ниже показан фрагмент многоста дийного синтеза, включающий защиту карбонильной группы:

    (см. скан)

    Исходное соединение А имеет две карбонильные группы, а в конечном продукте гидрокортизоне одна из кетонных групп должна быть восстановлена в спиртовую. Алюмогидрид лития восстановит обе кетонные группы, причем та, которую желательно сохранить неизменной, будет восстанавливаться даже быстрее, поскольку подход реагента к другой группе затруднен из-за стерических препятствий. Чтобы устранить эту трудность, проводят реакцию вещества А с одним молем 1,2-этандиола (этиленгликоля). При этом кеталь образует стерическй

    более доступная карбонильная группа, которая, таким образом, оказывается защищенной от действия восстановителей или других реагентов, взаимодействующих с кетонами. Теперь можно восстановить свободную карбонильную группу алюмогидридом лития и получить соединение С. Обратите внимание, что алюмогидрид также восстанавливает сложно-эфирную группу до спиртовой, но не затрагивает двойную углерод-углеродную связь. Далее, проведя необходимое для дальнейших превращений ацилирование спиртовой группы боковой цепи и получив соединение снимают защитную группу действием кислоты. Требуется еще несколько стадий, чтобы превратить вещество в гидрокортизон который применяется в медицине при артрите, ревматизме и воспалительных процессах.

    Другим примером использования реакции образования кеталей является синтез гуанадреля, обладающего гипотензивным действием (способностью понижать давление):

    (Некоторые детали этого и предыдущего синтезов опущены, чтобы сосредоточиться на обсуждаемой проблеме.)

    Восстановление

    Альдегиды и кетоны восстанавливаются соответственно до первичных и вторичных спиртов. Можно использовать газообразный водород в йрисутствии катализатора, однако в лаборатории это неудобно, так как Работа с газами требует специального оборудования и навыков работы.

    Гораздо чаще применяются комплексные гидриды, такие, как алюмогидрид лития и боргидрид натрия. Символом обозначают любой восстановитель или

    Конкретные примеры:

    Боргидрид натрия можно использовать в виде водного или спиртового раствора, алюмогидрид лития можно растворять только в эфире.

    С помощью одного из двух показанных ниже методов карбонильные соединения можно восстановить до алканов:

    реакция Вольфа - Кижнера

    реакция Клеменсена

    Оба эти метода применимы для большинства карбонильных соединений, но если в молекуле имеются группы, чувствительные к действию кислоты, следует использовать реакцию Вольфа - Кижнера (восстановление гидразином в присутствии щелочи), а если соединение неустойчиво к действию оснований, следует предпочесть восстановление по Клеменсену амальгамой (раствором в ртути) цинка в соляной кислоте:

    В последнем примере применение гидразина и основания нежелательно, так как при этом произойдет замещение атома хлора. Лучше Использовать реакцию Клеменсена.

    Окисление

    В то время как кетоны не подвергаются окислению, альдегиды окисляются до карбоновых кислот очень легко. При этом могут быть использованы самые разные окислители (мы уже упоминали об этом в гл. 7 и в настоящей главе):

    При взаимодействии с двумя молями спирта или одним молем диола альдегиды и кетоны образуют соответственно ацетали и кетали. Альдегиды и кетоны могут быть восстановлены до спиртов с помощью самых различных восстановителей. Восстановлением карбонильных соединений по Вольфу - Кижиеру или по Клеменсену получают алканы. Альдегиды легко окисляются до карбоновых кислот, кетоны в тех же условиях не реагируют.

    Реакции с производными аммиака

    Производные аммиака часто используются для идентификации альдегидов и кетонов. При взаимодействии этих соединений происходит следующее:

    Карбонильный атом углерода образует двойную связь с атомом азота и отщепляется молекула воды. Многие азотистые производные карбонильных соединений - твердые вещества, тогда как сами альдегиды и кетоны в большинстве своем жидкости. Получив твердое производное альдегида или кетона, сравнив его температуру плавления с табличными значениями, можно определить, какой альдегид или кетон был взят. Три наиболее распространенных типа соединений, используемых для этой цели, показаны ниже. Особенно удобны 2,4-динитрофенилгидразоны, окрашенные в яркий желтый, оранжевый или красный цвета, что также помогает идентифицировать альдегид или кетон.

    (см. скан)

    Ниже приведены температуры плавления азотистых производных некоторых альдегидов и кетонов, (температуры плавления определены с точностью ± 3 °С):

    (см. скан)

    Например, если Вы получили 2,4-динитрофенилгидразон неизвестного альдегида или кетона с температурой плавления 256 °С, следовательно, неизвестное карбонильное соединение - это, вероятно, коричный альдегид или Фбромбензальдегид. Если в дальнейшем Вы установили, что оксим имеет температуру плавления значит Ваше соединение -бромбензальдегид. Поскольку имеются данные по производным практически всех альдегидов и кетонов, они могут быть идентифицированы получением одного или нескольких азотистых производных и сравнением экспериментально найденных температур плавления с табличными значениями.

    Галогенирование

    Альдегиды и кетоны реагируют с галогенами в присутствии кислоты или основания, а также с гипогалогенитами, образуя -галогенированные соединения:

    Например:

    Для метилкетонов характерна галоформная реакция. При обработке этих соединений избытком галогена в щелочной среде происходит трехкратное галогенирование метильной группы и отщепление тригалогенметана с образованием аниона карбоновой кислоты:

    Если в качестве галогена использовать иод, образуется йодоформ, представляющий собой желтое кристаллическое вещество с температурой плавления 119 °С. Эта реакция является пробой на метилкетоны. Образование желтого осадка при обработке образца избытком иода в щелочной среде свидетельствует о присутствии в образце метилкетона.

    Реакции присоединения

    Наличие в карбонильной группе -связи между атомами углерода и кислорода делает возможным присоединение различных веществ к альдегидам и кетонам:

    К этой группе реакций относится уже обсуждавшееся образование полуацеталей и полукеталей:

    Большинство реакций присоединения относится к нуклеофил ьному типу. Поскольку атом углерода карбонильной группы несет частичный положительный заряд, на первой стадии нуклеофил присоединяется к атому углерода. Типичная реакция нуклеофильного присоединения - взаимодействие альдегидов и кетонов с цианидами:

    Образующийся на первой стадии анион отрывает протон от молекулы растворителя. В итоге образуется органический цианид - нитрил, вихрил можно гидролизовать до карбоновой кислоты:

    реакция такого типа используется в синтезе важного ненаркотического анальгетика ибупрофена:

    К реакциям нуклеофильного присоединения относится и реакция альдегидов и кетонов с реактивами Гриньяра (см. гл. 7). Приведем еще несколько примеров, давая сразу продукт гидролиза:

    Все эти реакции позволяют создавать новый углеродный скелет синтезировать практически любые спирты. Из формальдегида

    образуются первичные спирты, из других альдегидов - вторичные, а из кето нов - третичные спирты.

    Альдольная конденсация

    Альдегиды, имеющие -водородные атомы (атомы водорода при углеродном атоме, соседнем с карбонильным), в щелочной среде вступают в реакцию конденсации, которая является важным методом создания нового углеродного скелета. Например, при обработке ацетальдегида щелочью происходит следующее:

    На первой стадии образуется -гидрокеиальдегид, имеющий тривиальное название альдоль, поэтому все реакции этого типа имеют общее название альдольная конденсация. -Гидроксиальдегиды легко дегидратируются с образованием -непредельных альдегидов. В итоге образуется соединение, содержащее вдвое больше углеродных атомов, чем исходный альдегид.

    Общий механизмальдольной конденсации таков: 1. Гидроксид-ион отщепляет -протон у небольшой части молекул альдегида. а-Водородные атомы имеют слабокислый характер из-за резонансной стабилизации образующегося аниона:

    2. Образовавшийся анион, выступая как нуклеофил, атакует карбонильную группу другой молекулы альдегида, образуя новую углерод-углеродную связь:

    3. Новый анион отрывает протон от молекулы воды, регенерируя катализатор - гидроксид-ион:

    4. -Гидроксиальдегид легко (часто самопроювольно) теряет воду, превращаясь в -непредельный альдегид:

    В результате карбонильный атом углерода одной молекулы альдегида оказывается связанным двойной связью с -углеродным атомом другой молекулы. В приведенных ниже примерах части разных исходных молекул обведены в рамку:

    Непредельные альдегиды могут служить исходными веществами в синтезе самых разных органических соединений с новым углеродным скелетом, поскольку как карбонильная группа, так и двойная углерод-углеродная связь способны ко многим превращениям. Например:

    (кликните для просмотра скана)

    Реакция Виттига

    Альдегиды и кетоны реагируют с так называемыми илидами фосфора с образованием веществ, имеющих новый углеродный скелет. Илиды предварительно получают из триалкилфосфинов, галогеналканов и сильного основания, например, бутиллития :

    Обратите внимание, что полученный алкен содержит углеродные фрагменты карбонильного соединения и галогеналкана, а двойная связь соединяет атомы углерода, ранее соединенные с атомами кислорода и галогена. Например:

    С целью идентификации альдегиды и кетоны превращают в твердые производные. Оба типа карбонильных соединений в условиях кислого или щелочного катализа галогенируются в а-положение. Метил кетоны при обработке иодом в щелочной среде образуют йодоформ, что является качественной реакцией на метилкетоны. Альдегиды и кетоны в водной среде взаимодействуют с цианидами, давая нитрилы, которые можно гидролизовать до карбоновой кислоты, содрежащей на один углеродный атом больше, чем исходное соединение. При взаимодействии альдегидов и кетонов с раактивами Гриньяра образуются спирты. Альдольная конденсация и реакция Виттига позволяют создавать новый углеродный скелет.

    Сводка основных положений гл. 8

    1. В соответствии с номенклатурой IUPAC названия альдегидов и кетонов строятся путем добавления суффиксов "аль" или "он" соответственно к названиям углеводородов. Альдегиды

    имеют тривиальные названия, совпадающие с названиями карбоновых кислот. Названия кетонов в радикально-функциональной номенклатуре состоят из названий радикалов, соединенных с карбонильной группой, и слова "кетон".

    2. Альдегиды и кетоны получают окислением первичных и вторичных спиртов. Восстановление ацилгалогенидов приводит к образованию альдегидов, тогда как взаимодействие ацилгалогенидов с диалкилкадмием дает кетоны. В результате озонолиза алкенов также образуются альдегиды и (или) кетоны.

    3. Альдегиды и кетоны реагируют со спиртами, давая ацетали и кетали. Эта реакция используется для защиты карбонильной группы. Восстановление альдегидов и кетонов водородом или гидридами дает спирты. При восстановлении по Клеменсену или по Вольфу - Кижнеру образуются углеводороды. Альдегиды легко окисляются до карбоновых кислот. Для идентификации карбонильные соединения переводят в твердые производные, имеющие характеристические температуры плавления. При галогенировании альдегидов и кетонов галогены селективно направляются в -положение. При обработке метил кетонов иодом в щелочной среде образуется йодоформ Карбонильные соединения реагируют с цианидами, образуя нитрилы (которые можно гидролизовать до карбоновых кислот) и присоединяют реактивы Гриньяра, давая спирты. Построение нового углеродного скелета достигается с помощью альдольной конденсации и реакции Виттига.

    Ключевые слова

    (см. скан)

    Вопросы для развития навыков

    (см. скан)

    (см. скан)

    (см. скан)

    Альдегиды и кетоны имеют в своем составе карбонильную функциональную группу >С=О и относятся к классу карбонильных соединений. Также их называют оксосоединениями. Несмотря на то что эти вещества относятся к одному классу, из-за особенностей строения их все же разделяют на две большие группы.

    В кетонах атом углерода из группы >С=О соединен с двумя одинаковыми или различными углеводородными радикалами, обычно они имеют вид: R-СО-R". Такую форму карбонильной группы называют еще кетогруппой или оксогруппой. В альдегидах же карбонильный углерод соединен только с одним углеводородным радикалом, а оставшаяся валентность занимается атомом водорода: R-СОН. Такую группу принято называть альдегидной. Благодаря этим различиям в строении альдегиды и кетоны ведут себя немного по-разному при взаимодействии с одними и теми же веществами.

    Карбонильная группа

    Атомы С и О в этой группе находятся в sp 2 -гибридизированном состоянии. Углерод за счет sp 2 -гибридных орбиталей имеет 3 σ-связи, расположенные под углом примерно в 120 градусов в одной плоскости.

    Атом кислорода обладает гораздо большей электроотрицательностью, чем углеродный атом, а поэтому стягивает на себя подвижные электроны π-связи в группе >С=О. Поэтому на атоме О возникает избыточная электронная плотность δ - , а на атоме С, напротив, происходит ее уменьшение δ + . Этим и объясняются особенности свойств альдегидов и кетонов.

    Двойная связь С=О более прочная, чем С=С, но вместе с тем и более реакционно способная, что объясняется большой разницей в электроотрицательностях атомов углерода и кислорода.

    Номенклатура

    Как и для всех других классов органических соединений, существуют различные подходы к наименованию альдегидов и кетонов. В соответствии с положениями номенклатуры ИЮПАК, наличие альдегидной формы карбонильной группы обозначается суффиксом -аль, а кетонной -он. Если карбонильная группа является старшей, то она определяет порядок нумерации атомов С в основной цепи. В альдегидной карбонильный атом углерода является первым, а в кетонах атомы С нумеруют с того края цепи, к которому ближе группа >С=О. С этим связана необходимость обозначать положение карбонильной группы в кетонах. Делают это, записывая соответствующую цифру после суффикса -он.

    Если карбонильная группа не является старшей, то по правилам ИЮПАК ее наличие указывают приставкой -оксо для альдегидов и -оксо (-кето) для кетонов.

    Для альдегидов широко применяют тривиальные названия, получаемые от наименования кислот, в которые они способны превращаться при окислении с заменой слова "кислота" на "альдегид":

    • СΗ 3 -СОН уксусный альдегид;
    • СΗ 3 -СН 2 -СОН пропионовый альдегид;
    • СΗ 3 -СН 2 -СН 2 -СОН масляный альдегид.

    Для кетонов распространены радикально функциональные названия, которые складываются из наименований левого и правого радикалов, соединенных с карбонильным атомом углерода, и слова "кетон":

    • СΗ 3 -СО-СН 3 диметилкетон;
    • СΗ 3 -СΗ 2 -СО-СН 2 -СН 2 -СН 3 этилпропилкетон;
    • С 6 Η 5 -СО-СΗ 2 -СΗ 2 -СΗ 3 пропилфенилкетон.

    Классификация

    В зависимости от характера углеводородных радикалов класс альдегидов и кетонов делят на:

    • предельные - атомы С связаны друг с другом только одинарными связями (пропаналь, пентанон);
    • непредельные - между атомами С имеются двойные и тройные связи (пропеналь, пентен-1-он-3);
    • ароматические - содержат в своей молекуле бензольное кольцо (бензальдегид, ацетофенон).

    По числу карбонильных и наличию других функциональных групп различают:

    • монокарбонильные соединения - содержат только одну карбонильную группу (гексаналь, пропанон);
    • дикарбонильные соединения - содержат две карбонильные группы в альдегидной и/или кетонной форме (глиоксаль, диацетил);
    • карбонильные соединения, содержащие также другие функциональные группы, которые, в свою очередь, делятся на галогенкарбонильные, гидроксикарбонильные, аминокарбонильные и т.д.

    Изомерия

    Наиболее характерной для альдегидов и кетонов является структурная изомерия. Пространственная возможна тогда, когда в углеводородном радикале присутствует асимметрический атом, а также двойная связь с различными заместителями.

    • Изомерия углеродного скелета. Наблюдается у обоих типов рассматриваемых карбонильных соединений, но начинается с бутаналя в альдегидах и с пентанона-2 в кетонах. Так, бутаналь СН 3 -СΗ 2 -СΗ 2 -СОН имеет один изомер 2-метилпропаналь СΗ 3 -СΗ(СΗ 3)-СОН. А пентанон-2 СΗ 3 -СО-СΗ 2 -СΗ 2 -СΗ 3 изомерен 3-метилбутанону-2 СΗ 3 -СО-СΗ(СΗ 3)-СΗ 3 .
    • Межклассовая изомерия. Оксосоединения с одинаковым составом изомерны между собой. Например, составу С 3Η 6 О соответствуют пропаналь СН 3 -СΗ 2 -СОН и пропанон СΗ 3 -СО-СΗ 3 . А молекулярная формула альдегидов и кетонов С 4 Н 8 О подходит бутаналю СН 3 -СΗ 2 -СΗ 2 -СОН и бутанону СН 3 -СО-СΗ 2 -СΗ 3 .

    Также межклассовыми изомерами для карбоксильных соединений являются циклические оксиды. Например, этаналь и этиленоксид, пропанон и пропиленоксид. Кроме того, непредельные спирты и простые эфиры также могут иметь общий состав и оксосоединениями. Так, молекулярную формулу С 3 Н 6 О имеют:

    • СΗ 3 -СΗ 2 -СОН - пропаналь;
    • СΗ 2 =СΗ-СΗ 2 -ОН - ;
    • СΗ 2 =СΗ-О-СН 3 - метилвиниловый эфир.

    Физические свойства

    Несмотря на то что молекулы карбонильных веществ полярны, в отличие от спиртов, альдегиды и кетоны не имеют подвижного водорода, а значит, не образуют ассоциатов. Следовательно, температуры плавления и кипения их несколько ниже, чем у соответствующих им спиртов.

    Если сравнивать альдегиды и того же состава кетоны, то у последних t кип несколько выше. С увеличением молекулярной массы t пл и t кип оксосоединений закономерно повышаются.

    Низшие карбонильные соединения (ацетон, формальдегид, уксусный альдегид) хорошо растворимы в воде, высшие же альдегиды и кетоны растворяются в органических веществах (спиртах, эфирах и т.д.).

    Пахнут оксосоединения весьма различно. Низшие их представители имеют резкие запахи. Альдегиды, содержащие от трех до шести атомов С, пахнут очень неприятно, а вот высшие их гомологи наделены цветочными ароматами и даже применяются в парфюмерии.

    Реакции присоединения

    Химические свойства альдегидов и кетонов обусловлены особенностями строения карбонильной группы. Из-за того, что двойная связь С=О сильно поляризована, то под действием полярных агентов она легко переходит в простую одинарную связь.

    1. Взаимодействие с Присоединение HCN в присутствии следов щелочей происходит с образованием циангидринов. Щелочь добавляют для повышения концентрации ионов CN - :

    R-СОН + NCN ―> R-СН(ОН)-CN

    2. Присоединение водорода. Карбонильные соединения легко могут восстанавливаться до спиртов, присоединяя водород по двойной связи. При этом из альдегидов получают первичные спирты, а из кетонов - вторичные. Реакции катализируются никелем:

    Н 3 С-СОН + Н 2 ―> Н 3 С-СΗ 2 -ОΗ

    Η 3 С-СО-СΗ 3 + Η 2 ―> Н 3 С-СΗ(ОΗ)-СΗ 3

    3. Присоединение гидроксиламинов. Эти реакции альдегидов и кетонов катализируются кислотами:

    Н 3 С-СОН + NH 2 OH ―> Η 3 С-СΗ=N-ОН + Н 2 О

    4. Гидратация. Присоединение молекул воды к оксосоединениям приводит к образованию гем-диолов, т.е. таких двухатомных спиртов, в которых две гидроксильные группы присоединены к одному атому углерода. Однако такие реакции обратимы, полученные вещества тут же распадаются с образованием исходных веществ. Электроноакцепторные группы в данном случае смещают равновесие реакций в сторону продуктов:

    >С=О + Η 2 <―> >С(ОΗ) 2

    5. Присоединение спиртов. В ходе этой реакции могут получаться различные продукты. Если к альдегиду присоединяется две молекулы спирта, то образуется ацеталь, а если только одна, то полуацеталь. Условием проведения реакции является нагревание смеси с кислотой или водоотнимающим агентом.

    R-СОН + НО-R" ―> R-СН(НО)-О-R"

    R-СОН + 2НО-R" ―> R-СН(О-R") 2

    Альдегиды с длинной углеводородной цепью склонны к внутримолекулярной конденсации, в результате которой образуются циклические ацетали.

    Качественные реакции

    Понятно, что при отличающейся карбонильной группе в альдегидах и кетонах химия их тоже различна. Порой необходимо понять, к какому из этих двух типов относится полученное оксосоединение. легче, чем кетоны, происходит это даже под действием оксида серебра или гидроксида меди (II). При этом карбонильная группа изменяется в карбоксильную и образуется карбоновая кислота.

    Реакцией серебряного зеркала принято называть окисление альдегидов раствором оксида серебра в присутствии аммиака. Фактически в растворе образуется комплексное соединение, которое и воздействует на альдегидную группу:

    Ag 2 O + 4NH 3 + Н 2 О ―> 2ОΗ

    СΗ 3 -СОΗ + 2ОΗ ―> СН 3 -СОО-NH 4 + 2Ag + 3NH 3 +Н 2 О

    Чаще записывают суть происходящей реакции более простой схемой:

    СΗ 3 -СОΗ + Ag 2 O ―> СΗ 3 -СООΗ + 2Ag

    В ходе реакции окислитель восстанавливается до металлического серебра и выпадает в осадок. При этом на стенках реакционного сосуда образуется тонкий серебряный налет, похожий на зеркало. Именно за это реакция и получила свое название.

    Еще одной качественной реакцией, указывающей на разницу в строении альдегидов и кетонов, является действие на группу -СОН свежим Cu(OΗ) 2 . Готовят его добавлением щелочей к растворам солей меди двухвалентной. При этом образуется голубая суспензия, которая при нагревании с альдегидами меняет окраску на красно-коричневую за счет образования оксида меди (I):

    R-СОН + Cu(OΗ) 2 ―> R-СООΗ + Cu 2 O + Η 2 О

    Реакции окисления

    Оксосоединения можно окислить раствором KMnO 4 при нагревании в кислой среде. Однако кетоны при этом разрушаются с образованием смеси продуктов, которые не имеют практической ценности.

    Химическая реакция, отражающая данное свойство альдегидов и кетонов, сопровождается обесцвечиванием розоватой реакционной смеси. При этом из подавляющего большинства альдегидов получаются карбоновые кислоты:

    СН 3 -СОН + KMnO 4 + H 2 SO 4 ―> СН 3 -СОН + MnSO 4 + K 2 SO 4 + Н 2 О

    Формальдегид в ходе данной реакции окисляется до муравьиной кислоты, которая под действием окислителей распадается с образованием углекислого газа:

    Н-СОН + KMnO 4 + H 2 SO 4 ―> СО 2 + MnSO 4 + K 2 SO 4 + Н 2 О

    Для альдегидов и кетонов характерно полное окисление в ходе реакций горения. При этом образуются СО 2 и вода. Уравнение горения формальдегида имеет вид:

    НСОН + O 2 ―> СО 2 + Н 2 О

    Получение

    В зависимости от объемов продуктов и целей их использования способы получения альдегидов и кетонов делят на промышленные и лабораторные. В химическом производстве карбонильные соединения получают окислением алканов и алкенов (нефтепродуктов), дегидрированием первичных спиртов и гидролизом дигалогеналканов.

    1. Получение формальдегида из метана (при нагревании до 500 °С в присутствии катализатора):

    СΗ 4 + О 2 ―> НСОН + Η 2 О.

    2. Окисление алкенов (в присутствии катализатора и высокой температуре):

    2СΗ 2 =СΗ 2 + О 2 ―> 2СН 3 -СОН

    2R-СΗ=СΗ 2 + О 2 ―> 2R-СΗ 2 -СОΗ

    3. Отщепление водорода от первичных спиртов (катализируется медью, необходимо нагревание):

    СΗ 3 -СΗ 2 -ОН ―> СН 3 -СОН + Η 2

    R-СН 2 -ОН ―> R-СОН + Н 2

    4. Гидролиз дигалогеналканов щелочами. Обязательным условием является присоединенность обоих атомов галогенов к одному и тому же атому углерода:

    СΗ 3 -C(Cl) 2 H + 2NaOH ―> СΗ 3 -СОΗ + 2NaCl + Н 2 О

    В небольших количествах в лабораторных условиях карбонильные соединения получают гидратацией алкинов или окислением первичных спиртов.

    5. Присоединение воды к ацетиленам происходит в присутствии в кислой среде (реакция Кучерова):

    ΗС≡СΗ + Η 2 О ―> СН 3 -СОΗ

    R-С≡СΗ + Η 2 О ―> R-СО-СН 3

    6. Окисление спиртов с концевой гидроксильной группой проводят с использованием металлических меди или серебра, оксида меди (II), а также перманганатом или дихроматом калия в кислой среде:

    R-СΗ 2 -ОΗ + О 2 ―> R-СОН + Н 2 О

    Применение альдегидов и кетонов

    Необходим для получения фенолформальдегидных смол, получаемых в ходе реакции его конденсации с фенолом. В свою очередь образующиеся полимеры необходимы для производства разнообразных пластмасс, древесно-стружечных плит, клея, лаков и многого другого. Также он применяется для получения лекарственных средств (уротропина), дезинфицирующих средств и используется для хранения биологических препаратов.

    Основная часть этаналя идет на синтез уксусной кислоты и других органических соединений. Некоторые количества ацетальдегида используют в фармацевтическом производстве.

    Ацетон широко применяется для растворения многих органических соединений, в числе которых лаки и краски, некоторых видов каучуков, пластмасс, природных смол и масел. Для этих целей он используется не только чистым, но и в смеси с другими органическими соединениями в составе растворителей марок Р-648, Р-647, Р-5, Р-4 и др. Также его используют для обезжиривания поверхностей при изготовлении различных деталей и механизмов. Большие количества ацетона требуются для фармацевтического и органического синтеза.

    Многие альдегиды обладают приятными ароматами, благодаря чему применяются в парфюмерной промышленности. Так, цитраль имеет лимонный запах, бензальдегид пахнет горьким миндалем, фенилуксусный альдегид привносит в композицию аромат гиацинта.

    Циклогексанон нужен для производства многих синтетических волокон. Из него получают адипиновую кислоту, в свою очередь применяемую как сырье для капролактама, нейлона и капрона. Также он используется в качестве растворителя жиров, природных смол, воска и ПВХ.