Войти
Логопедический портал
  • Иван Сусанин: интересные факты Интересные события из жизни ивана сусанина
  • Способы быстрого устного умножения чисел
  • Саги викингов читать. Викинги – люди саги. Жизнь и нравы. Проклятое кольцо Андваринаут
  • “Мне голос был. Он звал утешно…”. Анна Ахматова ~ Мне голос был. Он звал утешно… Цветаева мне голос был он звал утешно
  • Любить свою Родину - значит знать её!
  • Деникин Антон - биография, факты из жизни, фотографии, справочная информация
  • Химические свойства h2. Водород (H) и его химические реакции. Гидрирование органических соединений

    Химические свойства h2. Водород (H) и его химические реакции. Гидрирование органических соединений

    В периодической системе водород располагается в двух абсолютно противоположных по своим свойствам группах элементов. Данная особенность делают его совершенно уникальным. Водород не просто представляет собой элемент или вещество, но также является составной частью многих сложных соединений, органогенным и биогенным элементом. Поэтому рассмотрим его свойства и характеристики более подробно.


    Выделение горючего газа в процессе взаимодействия металлов и кислот наблюдали еще в XVI веке, то есть во время становления химии как науки. Известный английский ученый Генри Кавендиш исследовал вещество, начиная с 1766 года, и дал ему название «горючий воздух». При сжигании этот газ давал воду. К сожалению, приверженность ученого теории флогистона (гипотетической «сверхтонкой материи») помешала ему прийти к правильным выводам.

    Французский химик и естествоиспытатель А. Лавуазье вместе с инженером Ж. Менье и при помощи специальных газометров в 1783 г. провел синтез воды, а после и ее анализ посредством разложения водяного пара раскаленным железом. Таким образом, ученые смогли прийти к правильным выводам. Они установили, что «горючий воздух» не только входит в состав воды, но и может быть получен из нее.

    В 1787 году Лавуазье выдвинул предположение, что исследуемый газ является простым веществом и, соответственно, относится к числу первичных химических элементов. Он назвал его hydrogene (от греческих слов hydor - вода + gennao - рождаю), т. е. «рождающий воду».

    Русское название «водород» в 1824 году предложил химик М. Соловьев. Определение состава воды ознаменовало конец «теории флогистона». На стыке XVIII и XIX веков было установлено, что атом водорода очень легкий (по сравнению с атомами прочих элементов) и его масса была принята за основную единицу сравнения атомных масс, получив значение, равное 1.

    Физические свойства

    Водород является легчайшим из всех известных науке веществ (он в 14,4 раз легче воздуха), его плотность составляет 0,0899 г/л (1 атм, 0 °С). Данный материал плавится (затвердевает) и кипит (сжижается), соответственно, при -259,1 °С и -252,8 °С (только гелий обладает более низкими t° кипения и плавления).

    Критическая температура водорода крайне низка (-240 °С). По этой причине его сжижение - довольно сложный и затратный процесс. Критическое давление вещества - 12,8 кгс/см², а критическая плотность составляет 0,0312 г/см³. Среди всех газов водород имеет наибольшую теплопроводность: при 1 атм и 0 °С она равняется 0,174 вт/(мхК).

    Удельная теплоемкость вещества в тех же условиях - 14,208 кДж/(кгхК) или 3,394 кал/(гх°С). Данный элемент слабо растворим в воде (около 0,0182 мл/г при 1 атм и 20 °С), но хорошо - в большинстве металлов (Ni, Pt, Pa и прочих), особенно в палладии (примерно 850 объемов на один объем Pd).

    С последним свойством связана его способность диффундирования, при этом диффузия через углеродистый сплав (к примеру, сталь) может сопровождаться разрушением сплава из-за взаимодействия водорода с углеродом (этот процесс называется декарбонизация). В жидком состоянии вещество очень легкое (плотность - 0,0708 г/см³ при t° = -253 °С) и текучее (вязкость - 13,8 спуаз в тех же условиях).

    Во многих соединениях этот элемент проявляет валентность +1 (степень окисления), подобно натрию и прочим щелочным металлам. Обычно он рассматривается в качестве аналога этих металлов. Соответственно он возглавляет I группу системы Менделеева. В гидридах металлов ион водорода проявляет отрицательный заряд (степень окисления при этом -1), то есть Na+H- имеет структуру, подобную хлориду Na+Cl-. В соответствии с этим и некоторыми другими фактами (близость физических свойств элемента «H» и галогенов, способность его замещения галогенами в органических соединениях) Hydrogene относят к VII группе системы Менделеева.

    В обычных условиях молекулярный водород имеет низкую активность, непосредственно соединяясь только с самыми активными из неметаллов (с фтором и хлором, с последним - на свету). В свою очередь, при нагревании он взаимодействует со многими химическими элементами.

    Атомарный водород имеет повышенную химическую активность (если сравнивать с молекулярным). С кислородом он образует воду по формуле:

    Н₂ + ½О₂ = Н₂О,

    выделяя 285,937 кДж/моль тепла или 68,3174 ккал/моль (25 °С, 1 атм). В обычных температурных условиях реакция протекает довольно медленно, а при t° >= 550 °С - неконтролируемо. Пределы взрывоопасности смеси водород + кислород по объему составляют 4–94 % Н₂, а смеси водород + воздух - 4–74 % Н₂ (смесь из двух объемов Н₂ и одного объема О₂ называют гремучим газом).

    Данный элемент используют для восстановления большинства металлов, так как он отнимает кислород у оксидов:

    Fe₃O₄ + 4H₂ = 3Fe + 4Н₂О,

    CuO + H₂ = Cu + H₂O и т. д.

    С разными галогенами водород образует галогеноводороды, к примеру:

    Н₂ + Cl₂ = 2НСl.

    Однако при реакции с фтором водород взрывается (это происходит и в темноте, при -252 °С), с бромом и хлором реагирует только при нагревании или освещении, а с йодом - исключительно при нагревании. При взаимодействии с азотом образуется аммиак, но лишь на катализаторе, при повышенных давлениях и температуре:

    ЗН₂ + N₂ = 2NН₃.

    При нагревании водород активно реагирует с серой:

    Н₂ + S = H₂S (сероводород),

    и значительно труднее - с теллуром или селеном. С чистым углеродом водород реагирует без катализатора, но при высоких температурах:

    2Н₂ + С (аморфный) = СН₄ (метан).

    Данное вещество непосредственно реагирует с некоторыми из металлов (щелочными, щелочноземельными и прочими), образуя гидриды, например:

    Н₂ + 2Li = 2LiH.

    Немаловажное практическое значение имеют взаимодействия водорода и оксида углерода (II). При этом в зависимости от давления, температуры и катализатора образуются разные органические соединения: НСНО, СН₃ОН и пр. Ненасыщенные углеводороды в процессе реакции переходят в насыщенные, к примеру:

    С n Н₂ n + Н₂ = С n Н₂ n ₊₂.

    Водород и его соединения играют в химии исключительную роль. Он обусловливает кислотные свойства т. н. протонных кислот, склонен образовывать с разными элементами водородную связь, оказывающую значительное влияние на свойства многих неорганических и органических соединений.

    Получение водорода

    Основными видами сырья для промышленного производства этого элемента являются газы нефтепереработки, природные горючие и коксовые газы. Его также получают из воды посредством электролиза (в местах с доступной электроэнергией). Одним из важнейших методов производства материала из природного газа считается каталитическое взаимодействие углеводородов, в основном метана, с водяным паром (т. н. конверсия). Например:

    СН₄ + H₂О = СО + ЗН₂.

    Неполное окисление углеводородов кислородом:

    СН₄ + ½О₂ = СО + 2Н₂.

    Синтезированный оксид углерода (II) подвергается конверсии:

    СО + Н₂О = СО₂ + Н₂.

    Водород, производимый из природного газа, является самым дешевым.

    Для электролиза воды применяется постоянный ток, который пропускается через раствор NaOH или КОН (кислоты не используют во избежание коррозии аппаратуры). В лабораторных условиях материал получают электролизом воды или в результате реакции между соляной кислотой и цинком. Однако чаще применяют готовый заводской материал в баллонах.

    Из газов нефтепереработки и коксового газа данный элемент выделяют путем удаления всех остальных компонентов газовой смеси, так как они легче сжижаются при глубоком охлаждении.

    Промышленным образом этот материал стали получать еще в конце XVIII века. Тогда его использовали для наполнения воздушных шаров. На данный момент водород широко применяют в промышленности, главным образом - в химической, для производства аммиака.

    Массовые потребители вещества - производители метилового и прочих спиртов, синтетического бензина и многих других продуктов. Их получают синтезом из оксида углерода (II) и водорода. Hydrogene используют для гидрогенизации тяжелого и твердого жидкого топлива, жиров и пр., для синтеза HCl, гидроочистки нефтепродуктов, а также в резке/сварке металлов. Важнейшими элементами для атомной энергетики являются его изотопы - тритий и дейтерий.

    Биологическая роль водорода

    Около 10 % массы живых организмов (в среднем) приходится на этот элемент. Он входит в состав воды и важнейших групп природных соединений, включая белки, нуклеиновые кислоты, липиды, углеводы. Для чего он служит?

    Этот материал играет решающую роль: при поддержании пространственной структуры белков (четвертичной), в осуществлении принципа комплиментарности нуклеиновых кислот (т. е. в реализации и хранении генетической информации), вообще в «узнавании» на молекулярном уровне.

    Ион водорода Н+ принимает участие в важных динамических реакциях/процессах в организме. В том числе: в биологическом окислении, которое обеспечивает живые клетки энергией, в реакциях биосинтеза, в фотосинтезе у растений, в бактериальном фотосинтезе и азотфиксации, в поддержании кислотно-щелочного баланса и гомеостаза, в мембранных процессах транспорта. Наряду с углеродом и кислородом он образует функциональную и структурную основы явлений жизни.

    Обобщающая схема «ВОДОРОД»

    I . Водород – химический элемент

    а) Положение в ПСХЭ

    • порядковый номер №1
    • период 1
    • группа I (главная подгруппа «А»)
    • относительная масса Ar(Н )=1
    • латинское название Hydrogenium (рождающий воду)

    б) Распространённость водорода в природе

    Водород - химический элемент.

    В земной коре (литосфера и гидросфера) – 1% по массе (10 место среди всех элементов)

    АТМОСФЕРА - 0,0001% по числу атомов

    Самый распространённый элемент во вселенной 92% от числа всех атомов (основная составная часть звёзд и межзвёздного газа)


    Водород – химический

    элемент

    В соединениях

    Н 2 О – вода (11% по массе)

    СН 4 – газ метан (25% по массе)

    Органические вещества (нефть, горючие природные газы и других)

    В организмах животных и растений (то есть в составе белков, нуклеиновых кислот, жиров, углеводов и других)

    В теле человека в среднем содержится около 7 килограммов водорода.

    в) Валентность водорода в соединениях


    II . Водород – простое вещество (Н 2)

    Получение

    1.Лаборатория (аппарат Киппа)

    А) Взаимодействие металлов с кислотами:

    Zn + 2HCl = ZnCl 2 + H 2

    соль

    Б) Взаимодействие активных металлов с водой:

    2Na + 2H 2 O = 2NaOH + H 2

    основание

    2. Промышленность

    · Электролиз воды

    эл. ток

    2H 2 O =2H 2 + O 2

    · Из природного газа

    t, Ni

    CH 4 + 2H 2 O=4H 2 +CO 2

    Нахождение водорода в природе.

    Водород широко распространен в природе, его содержание в земной коре (литосфера и гидросфера) составляет по массе 1%, а по числу атомов 16%. Водород входит в состав самого распространенного вещества на Земле - воды (11,19% Водорода по массе), в состав соединений, слагающих угли, нефть, природные газы, глины, а также организмы животных и растений (то есть в состав белков, нуклеиновых кислот, жиров, углеводов и других). В свободном состоянии Водород встречается крайне редко, в небольших количествах он содержится в вулканических и других природных газах. Ничтожные количества свободного Водорода (0,0001% по числу атомов) присутствуют в атмосфере. В околоземном пространстве Водород в виде потока протонов образует внутренний ("протонный") радиационный пояс Земли. В космосе Водород является самым распространенным элементом. В виде плазмы он составляет около половины массы Солнца и большинства звезд, основную часть газов межзвездной среды и газовых туманностей. Водород присутствует в атмосфере ряда планет и в кометах в виде свободного Н 2 , метана СН 4 , аммиака NH 3 , воды Н 2 О, радикалов. В виде потока протонов Водород входит в состав корпускулярного излучения Солнца и космических лучей.

    Существуют три изотопа водорода:
    а) легкий водород – протий,
    б) тяжелый водород – дейтерий (D),
    в) сверхтяжелый водород – тритий (Т).

    Тритий неустойчивый (радиоактивный) изотоп, поэтому в природе он практически не встречается. Дейтерий устойчив, но его очень мало: 0,015% (от массы всего земного водорода).

    Валентность водорода в соединениях

    В соединениях водород проявляет валентность I .

    Физические свойства водорода

    Простое вещество водород (Н 2) – это газ, легче воздуха, без цвета, без запаха, без вкуса, t кип = – 253 0 С, водород в воде нерастворим , горюч. Собирать водород можно путем вытеснения воздуха из пробирки или воды. При этом пробирку нужно перевернуть вверх дном.

    Получение водорода

    В лаборатории водород получают в результате реакции

    Zn + H 2 SO 4 = ZnSO 4 + H 2 .

    Вместо цинка можно использовать железо, алюминий и некоторые другие металлы, а вместо серной кислоты – некоторые другие разбавленные кислоты. Образующийся водород собирают в пробирку методом вытеснения воды (см. рис. 10.2 б) или просто в перевернутую колбу (рис. 10.2 а).

    В промышленности в больших количествах водород получают из природного газа (в основном это метан) при взаимодействии его с парами воды при 800 °С в присутствии никелевого катализатора:

    CH 4 + 2H 2 O = 4H 2 +CO 2 (t, Ni)

    или обрабатывают при высокой температуре парами воды уголь:

    2H 2 O + С = 2H 2 + CO 2 . (t)

    Чистый водород получают из воды, разлагая ее электрическим током (подвергая электролизу):

    2H 2 O = 2H 2 + O 2 (электролиз).



    Рассмотрим, что собой представляет водород. Химические свойства и получение этого неметалла изучают в курсе неорганической химии в школе. Именно этот элемент возглавляет периодическую систему Менделеева, а потому заслуживает детального описания.

    Краткие сведения об открытии элемента

    Прежде чем рассматривать физические и химические свойства водорода, выясним, как был найден этот важный элемент.

    Химики, которые работали в шестнадцатом и семнадцатом веках, неоднократно упоминали в своих трудах о горючем газе, который выделяется при воздействии на кислоты активными металлами. Во второй половине восемнадцатого века Г. Кавендишу удалось собрать и проанализировать этот газ, дав ему название «горючий газ».

    Физические и химические свойства водорода на тот момент времени не были изучены. Только в конце восемнадцатого века А. Лавуазье удалось путем анализа установить, что получить этот газ можно путем анализа воды. Чуть позже он стал называть новый элемент hydrogene, что в переводе означает «рождающий воду». Своим современным русским названием водород обязан М. Ф. Соловьеву.

    Нахождение в природе

    Химические свойства водорода можно анализировать только на основании его распространенности в природе. Данный элемент присутствует в гидро- и литосфере, а также входит в состав полезных ископаемых: природного и попутного газа, торфа, нефти, угля, горючих сланцев. Сложно себе представить взрослого человека, который бы не знал о том, что водород является составной частью воды.

    Кроме того, данный неметалл находится в организмах животных в виде нуклеиновых кислот, белков, углеводов, жиров. На нашей планете данный элемент встречается в свободном виде достаточно редко, пожалуй, только в природном и вулканическом газе.

    В виде плазмы водород составляет примерно половину массы звезд и Солнца, кроме того, входит в состав межзвездного газа. Например, в свободном виде, а также в форме метана, аммиака этот неметалл присутствует в составе комет и даже некоторых планет.

    Физические свойства

    Прежде чем рассматривать химические свойства водорода, отметим, что при нормальных условиях он является газообразным веществом легче воздуха, имеющим несколько изотопных форм. Он почти нерастворим в воде, имеет высокую теплопроводность. Протий, имеющий массовое число 1, считается самой легкой его формой. Тритий, который обладает радиоактивными свойствами, образуется в природе из атмосферного азота при воздействии на него нейронов УФ-лучей.

    Особенности строения молекулы

    Чтобы рассмотреть химические свойства водорода, реакции, характерные для него, остановимся и на особенностях его строения. В этой двухатомной молекуле ковалентная неполярная химическая связь. Образование атомарного водорода возможно при взаимодействии активных металлов на растворы кислот. Но в таком виде этот неметалл способен существовать только незначительный временной промежуток, практически сразу же он рекомбинируется в молекулярный вид.

    Химические свойства

    Рассмотрим химические свойства водорода. В большей части соединений, которые образует данный химический элемент, он проявляет степень окисления +1, что делает его похожим с активными (щелочными) металлами. Основные химические свойства водорода, характеризующие его в качестве металла:

    • взаимодействие с кислородом с образованием воды;
    • реакция с галогенами, сопровождающаяся образованием галогеноводорода;
    • получение сероводорода при соединении с серой.

    Ниже представлено уравнение реакций, характеризующих химические свойства водорода. Обращаем внимание на то, что в качестве неметалла (со степенью окисления -1) он выступает только в реакции с активными металлами, образуя с ними соответствующие гидриды.

    Водород при обычной температуре неактивно вступает во взаимодействие с другими веществами, поэтому большая часть реакций осуществляется только после предварительного нагревания.

    Остановимся подробнее на некоторых химических взаимодействиях элемента, который возглавляет периодическую систему химических элементов Менделеева.

    Реакция образования воды сопровождается выделением 285,937 кДж энергии. При повышенной температуре (больше 550 градусов по Цельсия) данный процесс сопровождается сильным взрывом.

    Среди тех химических свойств газообразного водорода, которые нашли существенное применение в промышленности, интерес представляет его взаимодействие с оксидами металлов. Именно путем каталитического гидрирования в современной промышленности осуществляют переработку оксидов металлов, например выделяют из железной окалины (смешанного оксида железа) чистый металл. Данный способ позволяет вести эффективную переработку металлолома.

    Синтез аммиака, который предполагает взаимодействие водорода с азотом воздуха, также востребован в современной химической промышленности. Среди условий протекания этого химического взаимодействия отметим давление и температуру.

    Заключение

    Именно водород является малоактивным химическим веществом при обычных условиях. При повышении температуры его активность существенно возрастает. Данное вещество востребовано в органическом синтезе. Например, путем гидрирования можно восстановить кетоны до вторичных спиртов, а альдегиды превратить в первичные спирты. Кроме того, путем гидрирования можно превратить ненасыщенные углеводороды класса этилена и ацетилена в предельные соединения ряда метана. Водород по праву считают простым веществом, востребованным в современном химическом производстве.

    Водород был открыт во второй половине 18 столетия английским ученым в области физики и химии Г. Кавендишем. Он сумел выделить вещество в чистом состоянии, занялся его изучением и описал свойства.

    Такова история открытия водорода. В ходе экспериментов исследователь определил, что это горючий газ, сгорание которого в воздухе дает воду. Это привело к определению качественного состава воды.

    Что такое водород

    О водороде, как о простом веществе, впервые заявил французский химик А. Лавуазье в 1784 году, поскольку определил, что в состав его молекулы входят атомы одного вида.

    Название химического элемента по-латыни звучит как hydrogenium (читается «гидрогениум»), что означает «воду рождающий». Название отсылает к реакции горения, в результате которой образуется вода.

    Характеристика водорода

    Обозначение водорода Н. Менделеев присвоил этому химическому элементу первый порядковый номер, разместив его в главной подгруппе первой группы и первом периоде и условно в главной подгруппе седьмой группы.

    Атомарный вес (атомная масса) водорода составляет 1,00797. Молекулярная масса H 2 равна 2 а. е. Молярная масса численно равна ей.

    Представлен тремя изотопами, имеющими специальное название: самый распространенный протий (H), тяжелый дейтерий (D), радиоактивный тритий (Т).

    Это первый элемент, который может быть полностью разделен на изотопы простым способом. Основывается он на высокой разнице масс изотопов. Впервые процесс был осуществлен в 1933 году. Объясняется это тем, что лишь в 1932 году был выявлен изотоп с массой 2.

    Физические свойства

    В нормальных условиях простое вещество водород в виде двухатомных молекул является газом, без цвета, у которого отсутствует вкус и запах. Мало растворим в воде и других растворителях.

    Температура кристаллизации — 259,2 о C, температура кипения — 252,8 о C. Диаметр молекул водорода настолько мал, что они обладают способностью к медленной диффузии через ряд материалов (резина, стекло, металлы). Это свойство находит применение, когда требуется очистить водород от газообразных примесей. При н. у. водород имеет плотность, равную 0,09 кг/м3.

    Возможно ли превращение водорода в металл по аналогии с элементами, расположенными в первой группе? Учеными установлено, что водород в условиях, когда давление приближается к 2 млн. атмосфер, начинает поглощать инфракрасные лучи, что свидетельствует о поляризации молекул вещества. Возможно, при еще более высоких давлениях, водород станет металлом.

    Это интересно: есть предположение, что на планетах-гигантах, Юпитере и Сатурне, водород находится в виде металла. Предполагается, что в составе земного ядра тоже присутствует металлический твердый водород, благодаря сверхвысокому давлению, создаваемому земной мантией.

    Химические свойства

    В химическое взаимодействие с водородом вступают как простые, так и сложные вещества. Но малую активность водорода требуется увеличить созданием соответствующих условий – повышением температуры, применением катализаторов и др.

    При нагревании в реакцию с водородом вступают такие простые вещества, как кислород (O 2), хлор(Cl 2), азот (N 2), сера(S).

    Если поджечь чистый водород на конце газоотводной трубки в воздухе, он будет гореть ровно, но еле заметно. Если же поместить газоотводную трубку в атмосферу чистого кислорода, то горение продолжится с образованием на стенках сосуда капель воды, как результат реакции:

    Горение воды сопровождается выделением большого количества теплоты. Это экзотермическая реакция соединения, в процессе которой водород окисляется кислородом с образованием оксида H 2 O. Это также и окислительно-восстановительная реакция, в которой водород окисляется, а кислород восстанавливается.

    Аналогично происходит реакция с Cl 2 с образованием хлороводорода.

    Для осуществления взаимодействия азота с водородом требуется высокая температура и повышенное давление, а также присутствие катализатора. Результатом является аммиак.

    В результате реакции с серой образуется сероводород, распознавание которого облегчает характерный запах тухлых яиц.

    Степень окисления водорода в этих реакциях +1, а в гидридах, описываемых ниже, – 1.

    При реакции с некоторыми металлами образуются гидриды, например, гидрид натрия – NaH. Некоторые из этих сложных соединений используются в качестве горючего для ракет, а также в термоядерной энергетике.

    Водород реагирует и с веществами из категории сложных. Например, с оксидом меди (II), формула CuO. Для осуществления реакции, водород меди пропускается над нагретым порошкообразным оксидом меди (II). В ходе взаимодействия реагент меняет свой цвет и становится красно-коричневым, а на холодных стенках пробирки оседают капельки воды.

    Водород в ходе реакции окисляется, образуя воду, а медь восстанавливается из оксида до простого вещества (Cu).

    Области применения

    Водород имеет большое значение для человека и находит применение в самых разных сферах:

    1. В химическом производстве – это сырье, в других отраслях – топливо. Не обходятся без водорода и предприятия нефтехимии и нефтепереработки.
    2. В электроэнергетике это простое вещество выполняет функцию охлаждающего агента.
    3. В черной и цветной металлургии водороду отводится роль восстановителя.
    4. Сего помощью создают инертную среду при упаковке продуктов.
    5. Фармацевтическая промышленность — пользуется водородом как реагентом в производстве перекиси водорода.
    6. Этим легким газом наполняют метеорологические зонды.
    7. Известен этот элемент и в качестве восстановителя топлива для ракетных двигателей.

    Ученые единодушно пророчат водородному топливу пальму первенства в энергетике.

    Получение в промышленности

    В промышленности водород получают методом электролиза, которому подвергают хлориды либо гидроксиды щелочных металлов, растворенные в воде. Также можно получать водород этим способом непосредственно из воды.

    Используется в этих целях конверсия кокса или метана с водяным паром. Разложение метана при повышенной температуре также дает водород. Сжижение коксового газа фракционным методом тоже применяется для промышленного получения водорода.

    Получение в лаборатории

    В лаборатории для получения водорода используют аппарат Киппа.

    В качестве реагентов выступают соляная или серная кислота и цинк. В результате реакции образуется водород.

    Нахождение водорода в природе

    Водород чаще других элементов встречается во Вселенной. Основную массу звезд, в том числе Солнца, и иных космических тел составляет водород.

    В земной коре его всего 0,15%. Он присутствует во многих минералах, во всех органических веществах, а также в воде, покрывающей на 3/4 поверхность нашей планеты.

    В верхних слоях атмосферы можно обнаружить следы водорода в чистом виде. Находят его и в ряде горючих природных газов.

    Газообразный водород является самым неплотным, а жидкий – самым плотным веществом на нашей планете. С помощью водорода можно изменить тембр голоса, если вдохнуть его, а на выдохе заговорить.

    В основе действия самой мощной водородной бомбы лежит расщепление самого легкого атома.

    Водород. Свойства, получение, применение.

    Историческая справка

    Водород – первый элемент ПСХЭ Д.И. Менделеева.

    Русское название водорода указывает, что он «рождает воду»; латинское «гидрогениум» означает то же самое.

    Впервые выделение горючего газа при взаимодействии некоторых металлов с кислотами наблюдали Роберт Бойль и его современники в первой половине XVI века.

    Но водород был открыт лишь в 1766 году английским химиком Генри Кавендишем, который установил, что при взаимодействии металлов с разбавленными кислотами выделяется некий «горючий воздух». Наблюдая горение водорода на воздухе, Кавендиш установил, что в результате появляется вода. Это было в 1782 году.

    В 1783 году году французский химик Антуан-Лоран Лавуазье выделил водород путем разложения воды раскаленным железом. В 1789 году водород был выделен при разложении воды под действием электрического тока.

    Распространенность в природе

    Водород – главный элемент космоса. Например, Солнце на 70 % своей массы состоит из водорода. Атомов водорода во Вселенной в несколько десятков тысяч раз больше, чем всех атомов всех металлов, вместе взятых.

    В земной атмосфере тоже есть немного водорода в виде простого вещества – газа состава Н 2 . Водород намного легче воздуха, и поэтому его находят в верхних слоях атмосферы.

    Но гораздо больше на Земле связанного водорода: ведь он входит в состав воды, самого распространенного на нашей планете сложного вещества. Водород, связанный в молекулы, содержат и нефть, и природный газ, многие минералы и горные породы. Водород входит в состав всех органических веществ.

    Характеристика элемента водорода.

    Водород имеет двойственную природу, по этой причине в одних случаях водород помещают в подгруппу щелочных металлов, а в других – в подгруппу галогенов.


    • Электронная конфигурация 1s 1 . Атом водорода состоит из одного протона и одного электрона.

    • Атом водорода способен терять электрон и превращаться в катион H + , и в этом он сходен со щелочными металлами.

    • Атом водорода также может присоединять электрон, образуя при этом анион Н - , в этом отношении водород сходен с галогенами.

    • В соединениях всегда одновалентен

    • СО: +1 и -1.

    Физические свойства водорода

    Водород – это газ, без цвета, вкуса и запаха. В 14,5 раз легче воздуха. Мало растворим в воде. Обладает высокой теплопроводностью. При t= –253 °С – сжижается, при t= –259 °С – затвердевает. Молекулы водорода настолько малы, что способны медленно диффундировать через многие материалы – резину, стекло, металлы, что используется при очистке водорода от других газов.

    Известны 3 изотопа водорода: - протий, - дейтерий, - тритий. Основную часть природного водорода составляет протий. Дейтерий входит в состав тяжелой воды, которой обогащены поверхностные воды океана. Тритий – радиоактивный изотоп.

    Химические свойства водорода

    Водород – неметалл, имеет молекулярное строение. Молекула водорода состоит из двух атомов, связанных между собой ковалентной неполярной связью. Энергия связи в молекуле водорода составляет 436 кДж/моль, что объясняет низкую химическую активность молекулярного водорода.


    1. Взаимодействие с галогенами. При обычной температуре водород реагирует лишь со фтором:
    H 2 + F 2 = 2HF.

    С хлором - только на свету, образуя хлороводород, с бромом реакция протекает менее энергично, с йодом не идет до конца даже при высоких температурах.


    1. Взаимодействие с кислородом – при нагревании, при поджигании реакция протекает со взрывом: 2H 2 + O 2 = 2H 2 O.
    Водород горит в кислороде с выделением большого количества тепла. Температура водородно-кислородного пламени 2800 °С.

    Смесь из 1 части кислорода и 2 частей водорода – «гремучая смесь», наиболее взрывоопасна.


    1. Взаимодействие с серой – при нагревании H 2 + S = H 2 S.

    2. Взаимодействие с азотом. При нагревании, высоком давлении и в присутствии катализатора:
    3H 2 + N 2 = 2NH 3 .

    1. Взаимодействие с оксидом азота (II). Используется в очистительных системах при производстве азотной кислоты: 2NO + 2H 2 = N 2 + 2H 2 O.

    2. Взаимодействие с оксидами металлов. Водород – хороший восстановитель, он восстанавливает многие металлы из их оксидов: CuO + H 2 = Cu + H 2 O.

    3. Сильным восстановителем является атомарный водород. Он образуется из молекулярного в электрическом разряде в условиях низкого давления. Высокой восстановительной активностью обладает водород в момент выделения , образующийся при восстановлении металла кислотой.

    4. Взаимодействие с активными металлами . При высокой температуре соединяется с щелочными и щелочно-земельными металлам и образуя белые кристаллические вещества – гидриды металлов, проявляя свойства окислителя: 2Na + H 2 = 2NaH;
    Ca + H 2 = CaH 2 .

    Получение водорода

    В лаборатории:


    1. Взаимодействие металла с разбавленными растворами серной и соляной кислот,
    Zn + 2HCl = ZnCl 2 + H 2 .

    1. Взаимодействие алюминия или кремния с водными растворами щелочей:
    2Al + 2NaOH + 10H 2 O = 2Na + 3H 2 ;

    Si + 2NaOH + H 2 O = Na 2 SiO 3 + 2H 2 .

    В промышленности:


    1. Электролиз водных растворов хлоридов натрия и калия или электролиз воды при присутствии гидроксидов:
    2NaCl + 2H 2 O = H 2 + Cl 2 + 2NaOH;

    2Н 2 О = 2Н 2 + О 2 .


    1. Конверсионный способ. Вначале получают водяной газ, пропуская пары воды через раскаленный кокс при 1000 °С:
    С + Н 2 О = СО + Н 2 .

    Затем оксид углерода (II) окисляют в оксид углерода (IV), пропуская смесь водяного газа с избытком паров воды над нагретым до 400–450 °С катализатором Fe 2 O 3:

    CO +H 2 O = CO 2 + H 2 .

    Образующийся оксид углерода (IV) поглощается водой, этим способом получают 50 % промышленного водорода.


    1. Конверсия метана: CH 4 + H 2 O = CO + 3H 2 .
    Реакция протекает в присутствии никелевого катализатора при 800 °С.

    1. Термическое разложение метана при 1200 °С: CH 4 = C + 2H 2 .

    2. Глубокое охлаждение (до -196 °С) коксового газа. При этой температуре конденсируются все газообразные вещества, кроме водорода.
    Применение водорода

    Применение водорода основано на его физических и химических свойствах:


    • как легкий газ, он используется для наполнения аэростатов (в смеси с гелием);

    • кислородно-водородное пламя применяется для получения высоких температур при сварки металлов;

    • как восстановитель используется для получения металлов (молибдена, вольфрама и др.) из их оксидов;

    • для получения аммиака и искусственного жидкого топлива, для гидрогенизации жиров.