Войти
Логопедический портал
  • Линейная зависимость системы векторов
  • Свен Нурдквист — Рождественская каша: Сказка Другие книги схожей тематики
  • Реферат: Химическая кинетика и равновесие
  • Исследовательская работа по истории "династия романовых" Начало правления романовых презентация
  • Дополнительная образовательная программа "школа будущего ученика" Занятия проводятся блоками в школе будущего ученика
  • Конспект нод по обучению грамоте в подготовительной группе Нод по обучению грамоте в подготовительной группе фгос
  • Наименованием числа авогадро является. Закон авогадро в химии. Расчет объема газ для нормальных условий

    Наименованием числа авогадро является. Закон авогадро в химии. Расчет объема газ для нормальных условий

    Высчитать объём, молярную массу, количество газообразного вещества и относительную плотность газа помогает закон Авогадро в химии. Гипотеза была сформулирована Амедео Авогадро в 1811 году, а позже была подтверждена экспериментально.

    Закон

    Первым исследовал реакции газов Жозеф Гей-Люссак в 1808 году. Он сформулировал законы теплового расширения газов и объёмных отношений, получив из хлористого водорода и аммиака (двух газов) кристаллическое вещество - NH 4 Cl (хлорид аммония). Выяснилось, что для его создания необходимо взять одинаковые объёмы газов. При этом если один газ был в избытке, то «лишняя» часть после реакции оставалась неиспользованной.

    Чуть позже Авогадро сформулировал вывод о том, что при одинаковых температурах и давлении равные объёмы газов содержат одинаковое количество молекул. При этом газы могут обладать разными химическими и физическими свойствами.

    Рис. 1. Амедео Авогадро.

    Из закона Авогадро вытекает два следствия:

    • первое - один моль газа при равных условиях занимает одинаковый объём;
    • второе - отношение масс одинаковых объёмов двух газов равно отношению их молярных масс и выражает относительную плотность одного газа по другому (обозначается D).

    Нормальными условиями (н.у.) считаются давление Р=101,3 кПа (1 атм) и температура Т=273 К (0°С). При нормальных условиях молярный объём газов (объём вещества к его количеству) составляет 22,4 л/моль, т.е. 1 моль газа (6,02 ∙ 10 23 молекул - постоянное число Авогадро) занимает объём 22,4 л. Молярный объём (V m) - постоянная величина.

    Рис. 2. Нормальные условия.

    Решение задач

    Главное значение закона - возможность проводить химические расчёты. На основе первого следствия закона можно вычислить количество газообразного вещества через объём по формуле:

    где V - объём газа, V m - молярный объём, n - количество вещества, измеряемое в молях.

    Второй вывод из закона Авогадро касается расчёта относительной плотности газа (ρ). Плотность высчитывается по формуле m/V. Если рассматривать 1 моль газа, то формула плотности будет выглядеть следующим образом:

    ρ (газа) = M/V m ,

    где M - масса одного моля, т.е. молярная масса.

    Для расчёта плотности одного газа по другому газу необходимо знать плотности газов. Общая формула относительной плотности газа выглядит следующим образом:

    D (y) x = ρ(x) / ρ(y),

    где ρ(x) - плотность одного газа, ρ(y) - второго газа.

    Если подставить в формулу подсчёт плотности, то получится:

    D (y) x = M(х) / V m / M(y) / V m .

    Молярный объём сокращается и остаётся

    D (y) x = M(х) / M(y).

    Рассмотрим практическое применение закона на примере двух задач:

    • Сколько литров СО 2 получится из 6 моль MgCO 3 при реакции разложения MgCO 3 на оксид магния и углекислый газ (н.у.)?
    • Чему равна относительная плотность CO 2 по водороду и по воздуху?

    Сначала решим первую задачу.

    n(MgCO 3) = 6 моль

    MgCO 3 = MgO+CO 2

    Количество карбоната магния и углекислого газа одинаково (по одной молекуле), поэтому n(CO 2) = n(MgCO 3) = 6 моль. Из формулы n = V/V m можно вычислить объём:

    V = nV m , т.е. V(CO 2) = n(CO 2) ∙ V m = 6 моль ∙ 22,4 л/моль = 134,4 л

    Ответ: V(СО 2) = 134,4 л

    Решение второй задачи:

    • D (H2) CO 2 = M(CO 2) / M(H 2) = 44 г/моль / 2 г/моль = 22;
    • D (возд) CO 2 = M(CO 2) / M (возд) = 44 г/моль / 29 г/моль = 1,52.

    Рис. 3. Формулы количества вещества по объёму и относительной плотности.

    Формулы закона Авогадро работают только для газообразных веществ. Они не применимы к жидкостям и твёрдым веществам.

    Что мы узнали?

    Согласно формулировке закона равные объёмы газов при одинаковых условиях содержат одинаковое количество молекул. При нормальных условиях (н.у.) величина молярного объёма постоянна, т.е. V m для газов всегда равняется 22,4 л/моль. Из закона следует, что одинаковое количество молекул разных газов при нормальных условиях занимают одинаковый объём, а также относительная плотность одного газа по другому - отношение молярной массы одного газа к молярной массе второго газа.

    Тест по теме

    Оценка доклада

    Средняя оценка: 4 . Всего получено оценок: 91.

    > Число Авогадро

    Узнайте, чему равно число Авогадро в молях. Изучите соотношение количества вещества молекул и число Авогадро, броуновское движение, постоянная газа и Фарадея.

    Количество молекул в моле именуют числом Авогадро, которое составляет 6.02 х 10 23 моль -1 .

    Задача обучения

    • Разобраться в связи числа Авогадро и молях.

    Основные пункты

    • Авогадро выдвинул предположение, что в случае единых давления и температуры равные газовые объемы вмещают одинаковое количество молекул.
    • Постоянная Авогадро выступает важным фактором, так как связывает другие физические постоянные и свойства.
    • Альберт Эйнштейн считал, что это число можно вывести из величин броуновского движения. Впервые измерить его удалось в 1908 году Жану Перрину.

    Термины

    • Постоянная газа – универсальная постоянная (R), вытекающая из закона об идеальном газе. Ее добывают из постоянной Больцмана и числа Авогадро.
    • Постоянная Фарадея – величина электрического заряда на моль электронов.
    • Броуновское движение – случайное смещение элементов, формирующихся из-за ударов с отдельными молекулами в жидкости.

    Если столкнулись с изменением количества вещества, то проще использовать единицу, отличную от количества молекул. Моль выступает базовой единицей в международной системе и передает вещество, вмещающее столько же атомов, сколько хранится в 12 г углерода-12. Это количество вещества именуют числом Авогадро.

    Ему удалось установить связь между массами одного объема разных газов (в условиях одинаковой температуры и давления). Это способствует взаимосвязи их молекулярных масс

    Число Авогадро передает количество молекул в одном грамме кислорода. Не забывайте, что это указание на количественную характеристику вещества, а не на независимый размер измерения. В 1811 году Авогадро догадался, что объем газа может выступать пропорциональным количеству атомов или молекул и на это не будет влиять природа газа (число – универсальное).

    Нобелевскую премию по физике в 1926 году получил Жан Перинн, который смог вывести постоянную Авогадро. Так что число Авогадро равно 6.02 х 10 23 моль -1 .

    Научное значение

    Постоянная Авогадро играет роль важного связующего звена в макро- и микроскопических природных наблюдениях. Она как бы прокладывает мост для других физических постоянных и свойств. Например, налаживает связь между газовой постоянной (R) и Больцмана (k):

    R = kN A = 8.314472 (15) Дж моль -1 K -1 .

    А также между постоянной Фарадея (F) и элементарным зарядом (e):

    F = N A e = 96485.3383 (83) C моль -1 .

    Вычисление постоянной

    Определение числа влияет на вычисление массы атома, которую добывают через деление массы моля газа на число Авогадро. В 1905 году Альберт Эйнштейн предлагал вывести ее, основываясь на величинах броуновского движения. Именно эту идею и протестировал в 1908 году Жан Перрин.

    Согласно изменениям определений основных единиц СИ точно равно

    N A = 6,022 140 76⋅10 23 моль −1 .

    Иногда в литературе проводят различие между постоянной Авогадро N A , имеющей размерность моль −1 , и численно равным ей безразмерным числом Авогадро А .

    Закон Авогадро

    История измерения константы

    Сам Авогадро не делал оценок числа молекул в заданном объёме, но понимал, что это очень большая величина. Первую попытку найти число молекул, занимающих данный объём, предпринял в году Йозеф Лошмидт . Из вычислений Лошмидта следовало, что для воздуха количество молекул на единицу объёма составляет 1,81⋅10 18 см −3 , что примерно в 15 раз меньше истинного значения. Через 8 лет Максвелл привёл гораздо более близкую к истине оценку «около 19 миллионов миллионов миллионов» молекул на кубический сантиметр, или 1,9⋅10 19 см −3 . По его оценке числа Авогадро было приблизительно 10 22 {\displaystyle 10^{22}} .

    В действительности в 1 см³ идеального газа при нормальных условиях содержится 2,68675⋅10 19 молекул . Эта величина была названа числом (или постоянной) Лошмидта . С тех пор было разработано большое число независимых методов определения числа Авогадро. Превосходное совпадение полученных значений является убедительным свидетельством реального количества молекул.

    Современные оценки

    Официально принятое в 2010 году значение числа Авогадро было измерено при использовании двух сфер, изготовленных из кремния-28 . Сферы были получены в Институте кристаллографии имени Лейбница и отполированы в австралийском Центре высокоточной оптики настолько гладко, что высоты выступов на их поверхности не превышали 98 нм . Для их производства был использован высокочистый кремний-28, выделенный в нижегородском из высокообогащённого по кремнию-28 тетрафторида кремния, полученного в Центральном конструкторском бюро машиностроения в Санкт-Петербурге.

    Располагая такими практически идеальными объектами, можно с высокой точностью подсчитать число атомов кремния в шаре и тем самым определить число Авогадро. Согласно полученным результатам, оно равно 6,02214084(18)·10 23 моль −1 .

    N A = 6,022 141 29(27)⋅10 23 моль −1 . N A = 6,022 140 857(74)⋅10 23 моль −1

    Связь между константами

    См. также

    Комментарии

    Примечания

    1. Ранее выводилось как количество молекул в грамм-молекуле или атомов в грамм-атоме .
    2. Авогадро постоянная // Физическая энциклопедия / Гл. ред. А. М. Прохоров . - М. : Советская энциклопедия , 1988. - Т. 1. - С. 11. - 704 с. - 100 000 экз.
    3. в отличие от N , обозначающее количество частиц (англ. Particle number )
    4. http://www.iupac.org/publications/books/gbook/green_book_2ed.pdf
    5. , с. 22-23.
    6. , с. 23.
    7. On the possible future revision of the International System of Units, the SI. Resolution 1 of the 24th meeting of the CGPM (2011).

    Стал настоящим прорывом в теоретической химии и способствовал тому, что гипотетические догадки превратились в великие открытия в области газовой химии. Предположения химиков получили убедительные доказательства в виде математических формул и простых соотношений, а результаты экспериментов теперь позволили делать далеко идущие выводы. Кроме этого, итальянский исследователь вывел количественную характеристику числа структурных частиц химического элемента. Число Авогадро впоследствии стало одной из важнейших констант в современной физике и химии.

    Закон объемных отношений

    Честь быть первооткрывателем газовых реакций принадлежат Гей-Люссаку, французскому ученому конца XVIII века. Этот исследователь дал миру известный закон, которому подчиняются все реакции, связанные с расширением газов. Гей-Люссак измерял объемы газов перед реакцией и объемы, которые получались в результате химического взаимодействия. В результате эксперимента ученый сделал вывод, известный как закон простых объемных отношений. Суть его в том, что объемы газов до и после соотносятся между собой как целые небольшие числа.

    Например, при взаимодействии газообразных веществ, соответствующих, например, одному объему кислорода и двум объемам водорода, получается два объема парообразной воды и так далее.

    Закон Гей-Люссака справедлив, если все измерения объемов происходят при одинаковых показателях давления и температуры. Этот закон оказался весьма важен для итальянского физика Авогадро. Руководствуясь им, он вывел свое предположение, которое имело далеко идущие последствия в химии и физике газов, и вычислил число Авогадро.

    Итальянский ученый

    Закон Авогадро

    В 1811 году Авогадро пришел к пониманию того, что в равных объемах произвольных газов при постоянных значениях температуры и давления содержится одно и то же число молекул.

    Этот закон, позднее названный в честь итальянского ученого, вводил в науку представление о мельчайших частичках вещества - молекулах. Химия разделилась на эмпирическую науку, какой она была, и науку, оперирующую количественными категориями, которой она стала. Авогадро особенно подчеркивал тот момент, что атомы и молекулы не являются одним и тем же, и что атомы являются составляющими кирпичиками для всех молекул.

    Закон итальянского исследователя позволил прийти к выводу о количестве атомов в молекулах различных газов. Например, после вывода закона Авогадро подтвердил предположение, что молекулы таких газов, как кислород, водород, хлор, азот, состоят из двух атомов. Также стало возможным установление атомных масс и молекулярных масс элементов, состоящих из разных атомов.

    Атомные и молекулярные массы

    При вычислении атомного веса какого-либо элемента первоначально за единицу измерения была принята масса водорода как самого легкого химического вещества. Но атомные массы многих химических веществ вычисляются как соотношение их кислородных соединений, то есть отношение кислорода и водорода принималось как 16:1. Эта формула была несколько неудобной для измерений, поэтому эталоном атомной массы приняли массу изотопа углерода - самого распространенного вещества на земле.

    На основе закона Авогадро основан принцип определения масс различных газообразных веществ в молекулярном эквиваленте. В 1961 году принимается единая система отсчета относительных атомных величин, в основу которой легла условная единица, равная 1/12 части массы одного изотопа углерода 12 С. Сокращенное название атомной единицы массы - а.е.м. Согласно данной шкале, атомная масса кислорода равна 15,999 а.е.м, а углерода - 1,0079 а.е.м. Так возникло новое определение: относительная атомная масса - это масса атома вещества, выраженная в а.е.м.

    Масса молекулы вещества

    Любое вещество состоит из молекул. Масса такой молекулы выражается в а.е.м, это значение равняется сумме всех атомов, входящих в ее состав. К примеру, молекула водорода имеет массу 2,0158 а.е.м, то есть 1,0079 х 2, а молекулярную массу воды можно вычислить по ее химической формуле H 2 O. Два атома водорода и единственный атом кислорода в сумме дают значение 18,0152 а.е.м.

    Значение атомной массы для каждого вещества принято называть относительной молекулярной массой.

    До недавнего времени вместо понятия "атомная масса" использовалось словосочетание «атомный вес». В настоящее время оно не используется, но до сих пор встречается в старых учебниках и научных трудах.

    Единица количества вещества

    Вместе с единицами объема и массы в химии используется особая мера количества вещества, называемая моль. Эта единица показывает то количество вещества, которое вмещает в себя столько молекул, атомов и других структурных частиц, сколько их содержится в 12 г углерода изотопа 12 С. При практическом применении моля вещества следует принимать во внимание, какие именно частицы элементов имеются в виду - ионы, атомы или молекулы. Например, моль ионов H + и молекул H 2 - это совершенно разные меры.

    В настоящее время с большой точностью измерено количество вещества в моле вещества.

    Практические расчеты показывают, что количество структурных единиц в моле составляет 6,02 х 10 23 . Эта константа имеет название «число Авогадро». Названная в честь итальянского ученого, эта химическая величина показывает число структурных единиц в моле любого вещества, независимо от его внутренней структуры, состава и происхождения.

    Мольная масса

    Масса одного моля вещества в химии имеет название "мольная масса", эта единица выражается соотношением г/моль. Применяя значение мольной массы на практике, можно видеть, что мольная масса водорода составляет 2,02158 г/моль, кислорода - 1,0079 г/моль и так далее.

    Следствия закона Авогадро

    Закон Авогадро вполне применим для определения количества вещества при вычислении объема газа. Одинаковое количество молекул любого газообразного вещества при неизменных условиях занимает равный объем. С другой стороны, 1 моль любого вещества содержит неизменное число молекул. Напрашивается вывод: при неизменных температуре и давлении один моль газообразного вещества занимает постоянный объем и содержит равное количество молекул. Число Авогадро утверждает, что в объеме 1 моля газа содержится 6,02 х 10 23 молекул.

    Расчет объема газ для нормальных условий

    Нормальные условия в химии - это атмосферное давление 760 мм рт. ст. и температура 0 о C. При этих параметрах экспериментально установлено, что масса одного литра кислорода равна 1,43 кг. Следовательно, объем одного моля кислорода равен 22,4 литра. При вычислении объема любого газа результаты показывали одно и то же значение. Так постоянная Авогадро сделала еще один вывод касательно объемов различных газообразных веществ: при нормальных условиях один моль любого газообразного элемента занимает 22,4 литра. Эта постоянная величина получила название мольного объема газа.

    Из школьного курса химии нам известно, что если взять один моль какого-нибудь вещества, то в нем будет 6.02214084(18).10^23 атомов или других структурных элементов (молекул, ионов и т.д.). Для удобства число Авогадро принято записывать в таком виде: 6.02 . 10^23.

    Однако почему постоянная Авогадро (на украинском языке «стала Авогадро») равна именно такому значению? Ответ на этот вопрос в учебниках отсутствует, а историки от химии предлагают самые разные версии. Такое впечатление, что число Авогадро имеет некий тайный смысл. Ведь есть же магические числа, куда некоторые относят число «пи», числа фибоначчи, семерку (на востоке восьмерку), 13 и т.д. Будем бороться с информационным вакуумом. О том, кто такой Амедео Авогадро, и почему в честь этого ученого помимо сформулированного им закона, найденной константы был также назван мы говорить не будет. Об этом и без того написано множество статей.

    Если быть точным, не занимался подсчетами молекул или атомов в каком-то определенном объеме. Первым, кто попытался выяснить, сколько молекул газа

    содержится в заданном объеме при одинаковом давлении и температуре, был Йозеф Лошмидт, а было это в 1865 году. В результате своих экспериментов Лошмидт пришел к выводу, что в одном кубическом сантиметре любого газа в обычных условиях находится 2.68675 . 10^19 молекул.

    Впоследствии было изобретено независимых способов того, как можно определить число Авогадро и поскольку результаты в большей части совпадали, то это лишний раз говорило в пользу действительного существования молекул. На данный момент число методов перевалило за 60, но в последние годы ученые стараются еще больше повысить точность оценки, чтобы ввести новое определение термина «килограмм». Пока что килограмм сопоставляется с выбранным материальным эталоном без какого-либо фундаментального определения.

    Однако вернемся к нашему вопросу - почему данная константа равна 6.022 . 10^23?

    В химии, в 1973 г., для удобства в расчетах было предложено ввести такое понятие как «количество вещества». Основной единицей для измерения количества стал моль. Согласно рекомендациям IUPAC, количество любого вещества пропорционально числу его конкретных элементарных частиц. Коэффициент пропорциональности не зависит от типа вещества, а число Авогадро является его обратной величиной.

    Для наглядности возьмем какой-нибудь пример. Как известно из определения атомной единицы массы, 1 а.е.м. соответствует одной двенадцатой от массы одного атома углерода 12С и составляет 1.66053878.10^(−24) грамма. Если умножить 1 а.е.м. на константу Авогадро, то получится 1.000 г/моль. Теперь возьмем какой-нибудь скажем, бериллий. Согласно таблице масса одного атома бериллия составляет 9.01 а.е.м. Посчитаем чему равен один моль атомов этого элемента:

    6.02 х 10^23 моль-1 * 1.66053878х10^(−24) грамм * 9.01 = 9,01 грамм/моль.

    Таким образом, получается, что численно совпадает с атомной.

    Постоянная Авогадро была специально выбрана так, чтобы молярная масса соответствовала атомной либо безразмерной величине - относительной молекулярной Можно сказать, что число Авогадро обязано своему появлению, с одной стороны, атомной единице массы, а с другой - общепринятой единице для сравнения массы - грамму.