Войти
Логопедический портал
  • Иван Сусанин: интересные факты Интересные события из жизни ивана сусанина
  • Способы быстрого устного умножения чисел
  • Саги викингов читать. Викинги – люди саги. Жизнь и нравы. Проклятое кольцо Андваринаут
  • “Мне голос был. Он звал утешно…”. Анна Ахматова ~ Мне голос был. Он звал утешно… Цветаева мне голос был он звал утешно
  • Любить свою Родину - значит знать её!
  • Деникин Антон - биография, факты из жизни, фотографии, справочная информация
  • Механизм образования кратной связи. Ковалентная связь: полярная и неполярная, свойства и примеры. Образование связи при рекомбинации атомов

    Механизм образования кратной связи. Ковалентная связь: полярная и неполярная, свойства и примеры. Образование связи при рекомбинации атомов

    КС – связь, осуществляемая за счет электронной пары, принадлежащей обоим атомам.

    Условия образования КС : она образуется между атомами с высокой электроотрицательностью. (электоротр-ть – способность атомов притягивать к себе электроны).

    ∆Χ – разность электроотрицательности 2-х атомов, если ∆Χ≤1.4, связь полярная

    КС м.б. образована:

    1 – между любыми атомами неметаллов (т.к. у всех неметаллов высокие значения электроотр-ти), пр: HCl, значения электроотр-ти – по таблицам, у Н=2.1, у Cl=3.1, - ∆Χ=3.1-2.1=1≤1.4, это связь ковалентная и полярная.

    2 – между атомами неметалла и металла, если металл находится в высокой степени окисления, пр: CrCl6 дляCr=2.4, ∆Χ=3.1-2.4=0.7≤1.4 - это ковалентная полярная связь.

    Механизмы образования КС :

    1- обменный механизм - 2 атома обмениваются электронами, образуя общую электронную пару, принадлежащую обоим и называемую «поделенная». Примером могут служить молекулы летучих неорганических соединений: НСl, Н 2 О, Н 2 S, NН 3 и др. Образование молекулы НСl можно представить схемой Н. + . Сl: = Н:Cl: Электронная пара смещена к атому хлора, так как относительная электроотрицательность атома хлора (2,83) больше, чем атома водорода (2,1).

    2 – донорно-акцепторный механизм : - заключается в том, что пара электронов одного атома (донора) занимает свободную орбиталь другого атома (акцептора) Рассмотрим в качестве примера механизм образования иона аммония . В молекуле аммиака атом азота имеет неподеленную пару электронов двухэлектронное облако): .

    У иона водорода свободна (не заполнена) 1s-орбиталь, что можно обозначить как □H+. При образовании иона аммония двухэлектронное облако азота становится общим для атомов азота и водорода, т.е. оно превращается в молекулярное электронное облако. А значит, возникает четвертая ковалентная связь. Процесс образования иона аммония можно представить схемой

    + □H+ →

    Заряд иона водорода становится общим (он делокализован, т.е. рассредоточен между всеми атомами), а двухэлектронное облако (неподеленная электронная пара), принадлежащее азоту, становится общим с водородом.



    Ковалентная связь бывает полярной (сложные молекулы) и неполярной (простые молекулы).

    Свойства ковалентной связи

    Ковалентная связь обладает рядом важных свойств. К их числу относятся: насыщаемость и направленность.

    Насыщаемость - характерное свойство ковалентной связи. Она проявляется в способности атомов образовывать ограниченное число ковалентных связей. Это связано с тем, что одна орбиталь атома может принимать участие в образовании только одной ковалентной химической связи. Данное свойство определяет состав молекулярных химических соединений. Так, при взаимодействии атомов водорода образуется молекула Н 2 , а не Н 3 . Третий атом водорода не может присоединиться, так как спин его электрона окажется параллельным спину одного из спаренных электронов в молекуле. Способность к образованию того или иного числа ковалентных связей у атомов различных элементов ограничивается получением максимального числа неспаренных валентных электронов.

    Направленность - свойство ковалентной связи, определяющее геометрическую структуру молекулы. Причина направленности связи заключается в том, что перекрывание электронных орбиталей возможно только при их определенной взаимной ориентации, обеспечивающей наибольшую электронную плотность в области их перекрывания. В этом случае образуется наиболее прочная химическая связь.

    Ковалентная связь – это связь, связывающая чаще всего атомы неметаллов молекулах и кристаллах. О том, какую химическую связь называют ковалентной говорим в этой статье.

    Что такое ковалентная химическая связь?

    Ковалентная химическая связь – это связь, осуществляемая за счет образования общих (связывающих) электронных пар.

    Если между двумя атомами имеется одна общая электронная пара, то такая связь называется одинарной (ординарной), если две – двойной, если три – тройной.

    Связь принято обозначать горизонтальной черточкой между атомами. Например, в молекуле водорода одинарная связь: H-H; в молекуле кислорода двойная связь: O=O; в молекуле азота тройная связь:

    Рис. 1. Тройная связь в молекуле азота.

    Чем выше кратность связи, тем прочнее молекула: наличие тройной связи объясняет высокую химическую устойчивость молекул азота.

    Образование и виды ковалентной связи

    Существуют два механизма образования ковалентной связи: обменный механизм и донорно-акцепторный механизм:

    • обменный механизм . При обменном механизме для образования общей электронной пары два связывающихся атома предоставляют по одному неспаренному электрону. Именно так происходит, например, при образовании молекулы водорода.

    Рис. 2. Образование молекула водорода.

    Общая электронная пара принадлежит каждому из связанных атомов, то есть электронная оболочка у них завершена.

    • донорно-акцепторный механизм . При донорно-акцепторном механизме общую электронную пару представляет один из связывающихся атомов, тот, который является более электроотрицательным. Второй атом представляет свободную орбиталь для общей электронной пары.

    Рис. 3. Образование иона аммония.

    Так образуется ион аммония NH 4 +. Этот положительно заряженный ион (катион) образуется при взаимодействии газа аммиака с любой кислотой. В растворе кислоты существуют катионы водорода (протоны), в водородной среде образующие катион гидроксония H 3 O+. Формула аммиака NH 3: молекула состоит из одного атома азота и трех атомов водорода, связанных одинарными ковалентными связями по обменному механизму. У атома азота остается при этом одна неподеленная электронная пара. Ее он предоставляет в качестве общей, как донор, иону водорода H+, имеющему свободную орбиталь.

    Ковалентная химическая связь в химических веществах может быть полярной и неполярной. Связь не имеет дипольного момента, то есть полярности, если связаны два атома одного и того же элемента, имеющие одно и то же значение электроотрицательности. Так, в молекуле водорода связь неполярная.

    В молекуле хлороводорода HCl ковалентной одинарной связью соединены атомы с разной электроотрицательностью. Общая электронная пара оказывается сдвинутой в сторону хлора, у которого выше сродство к электрону и электроотрицательность. Возникает дипольный момент, связь становится полярной. При этом происходит частичное разделение заряда: атом водорода становится положительным концом диполя, а атом хлора – отрицательным.

    Любая ковалентная связь обладает следующими характеристиками: энергия, длина, кратность, полярность, поляризуемость, насыщаемость, направленность в пространстве

    Что мы узнали?

    Ковалентная химическая связь образуется перекрытием пары валентных электронных облаков. Этот вид связи может образовываться по донорно-акцепторному механизму, а также по обменному механизму. Ковалентная связь бывает полярной и неполярной и характеризуется наличием длины, кратности, полярности, направленности в пространстве.

    Тест по теме

    Оценка доклада

    Средняя оценка: 4.2 . Всего получено оценок: 164.

    (по материалам сайта http://chemel.ru/2008-05-24-19-19-34/2008-06-01-15-23-43/18-2008-05-29-22-08-32.html)

    Известно, что неметаллы взаимодействуют друг с другом. Рассмотрим механизм возникновения ковалентной связи на примере образования молекулы водорода:
    Н+Н=Н 2 H= - 436кДж/моль

    Представим себе, что мы имеем два отдельных изолированных атома водорода. Ядро каждого из свободных атомов водорода окружено сферическим симметричным электронным облаком, образуемым 1s-электроном (см. рис. 1). При сближении атомов до определенного расстояния происходит частичное перекрывание электронных оболочек (орбиталей) (рис. 2).

    В результате между центрами обоих ядер возникает молекулярное двухэлектронное облако, обладающее максимальной электронной плотностью в пространстве между ядрами; увеличение плотности отрицательного заряда благоприятствует сильному возрастанию сил притяжения между ядрами и молекулярным облаком.

    Итак, ковалентная связь образуется в результате перекрывания электронных облаков атомов, сопровождающегося выделением энергии. Если у сблизившихся до касания атомов водорода расстояние между ядрами составляет 0,106 нм, то после перекрывания электронных облаков (образования молекулы H 2) это расстояние составляет 0,074 нм (рис. 2).

    Обычно наибольшее перекрывание электронных облаков осуществляется вдоль линии, соединяющей ядра двух атомов.

    Химическая связь тем прочнее, чем больше перекрывание электронных орбиталей.

    В результате возникновения химической связи между двумя атомами водорода каждый из них достигает электронной конфигурации атома благородного газа.

    Изображать химические связи принято по-разному:

    1) с помощью электронов в виде точек, поставленных у химического знака элемента.

    Тогда образование молекулы водорода можно показать схемой:
    Н + Н Н:Н

    2) с помощью квантовых ячеек (ячеек Гунда), как размещение двух электронов с противоположными спинами в одной молекулярной квантовой ячейке:


    Схема, расположенная слева, показывает, что молекулярный энергетический уровень ниже исходных атомных уровней, а значит, молекулярное состояние вещества более устойчиво, чем атомное.

    3) часто, особенно в органической химии, ковалентную связь изображают черточкой (штрихом)

    (например Н-Н), которая символизирует пару электронов.
    Ковалентная связь в молекуле хлора также осуществляется с помощью двух общих электронов, или электронной пары:


    Как видно, каждый атом хлора имеет три неподеленные пары и один неспаренный электрон.

    Образование химической связи происходит за счет неспаренных электронов каждого атома. Неспаренные электроны связываются в общую пару электронов, называемую также общей (поделенной) парой.

    Если между атомами возникла одна ковалентная связь (одна общая электронная пара), то она называется одинарной; если больше, то кратной (две общие электронные пары), тройной (три общие электронные пары).

    Одинарная связь изображается одной черточкой (штрихом), двойная - двумя, тройная - тремя. Черточка между двумя атомами показывает, что у них пара электронов обобщена, в результате чего и образовалась химическая связь. С помощью таких черточек изображают последовательность соединения атомов в молекуле.

    Итак, в молекуле хлора каждый его атом имеет завершенный внешний уровень из восьми электронов (s 2 p 6), причем два из них (электронная пара) в одинаковой мере принадлежат обоим атомам.

    Несколько по-иному изображают связь в молекуле кислорода О 2 . Экспериментально установлено, что кислород является парамагнитным веществом (втягивается в магнитное поле). В его молекуле имеется два неспаренных электрона. Структуру этой молекулы можно изобразить так:

    Однозначное решение об изображении электронной структуры молекулы кислорода еще не найдено. Однако ее нельзя изображать так:

    В молекуле азота N 2 атомы имеют три общие электронные пары:

    Очевидно, что молекула азота прочнее молекулы кислорода или хлора, чем и обусловлена значительная инертность азота в химических реакциях.

    Химическая связь, осуществляемая электронными парами, называется ковалентной.

    Это двухэлектронная и двухцентровая (удерживает два ядра) связь.

    Соединения с ковалентной связью называются гомеополярными, или атомными.

    Различают две разновидности ковалентной связи: неполярную и полярную.

    В случае неполярной ковалентной связи электронное облако, образованное общей парой электронов, или электронное облако связи, распределяется в пространстве симметрично относительно ядер обоих атомов.

    Примером являются двухатомные молекулы, состоящие из атомов одного элемента: Н 2 Cl 2 , О 2 , N 2 , F 2 и др.. в которых электронная пара в одинаковой мере принадлежит обоим атомам.

    В случае полярной ковалентной связи электронное облако связи смещено к атому с большей относительной электроотрицательностью.

    Примером могут служить молекулы летучих неорганических соединений: НС1, Н 2 О, H 2 S, NH 3 и др.

    Образование молекулы НС1 можно представить схемой:

    Электронная пара смещена к атому хлора, так как относительная электроотрицательность атома хлора (2,83) больше, чем атома водорода (2,1).

    Ковалентная связь образуется не только за счет перекрывания одноэлектронных облаков, - это обменный механизм образования ковалентной связи.

    Возможен и другой механизм образования ковалентной связи - донорно-акцепторный. В этом случае химическая связь возникает за счет двухэлектронного облака одного атома и свободной орбитали другого атома. Рассмотрим в качестве примера механизм образования иона аммония NH +4 . В молекуле аммиака атом азота имеет неподеленную пару электронов (двухэлектрон-
    ное облако):

    У иона водорода свободна (не заполнена) 1s-орбиталь, что можно обозначить так:Н+. При образовании иона аммония двухэлектронное облако азота становится общим для атомов азота и водорода, т.е. оно превращается в молекулярное электронное облако. А значит, возникает четвертая ковалентная связь.

    Процесс образования иона аммония можно представить схемой:


    Заряд иона водорода становится общим (он делокализован, т.е. рассредоточен между всеми атомами), а двухэлектронное облако (неподеленная электронная пара), принадлежащее азоту, становится общим с водородом. В схемах изображение ячейки  часто опускается.

    Атом, предоставляющий неподеленную электронную пару, называется донором, а атом, принимающий ее (т.е. предоставляющий свободную орбиталь), называется акцептором.

    Механизм образования ковалентной связи за счет двухэлектронного облака одного атома (донора) и свободной орбитали другого атома (акцептора) называется донорно-акцепторным. Образованная таким путем ковалентная связь называется донорно-акцепторной, или координационной, связью.

    Однако это не особый вид связи, а лишь иной механизм (способ) образования ковалентной связи. По свойствам четвертая N-H-связь в ионе аммония ничем не отличается от остальных связей.

    Металлическая связь

    Атомы большинства металлов на внешнем энергетическом уровне содержат небольшое число электронов. Так, по одному электрону содержат 16 элементов, по два - 58, по три - 4 элемента и ни одного - только у Pd. Атомы элементов Ge, Sn и Pb имеют на внешнем уровне по 4 электрона, Sb и Bi - по 5, Ро - 6, но эти элементы не являются характерными металлами.

    Элементы металлы образуют простые вещества - металлы. В обычных условиях это кристаллические вещества (кроме ртути). На рис. 3 представлена схема кристаллической решетки натрия.

    Как видно, каждый атом натрия окружен восемью соседними. На примере натрия рассмотрим природу химической связи в металлах.

    У атома натрия, как и у других металлов, имеется избыток валентных орбиталей и недостаток электронов.

    Так, валентный электрон (3s 1) может занимать одну из девяти свободных орбиталей - 3s (одна), Зр (три) и 3d (пять).

    При сближении атомов в результате образования кристаллической решетки валентные орбитали соседних атомов перекрываются,


    благодаря чему электроны свободно перемещаются из одной орбитали в другую, осуществляя связь между всеми атомами кристалла металла. Такой тип химической связи называется металлической связью.

    Металлическую связь образуют элементы, атомы которых на внешнем уровне имеют мало валентных электронов по сравнению с общим числом внешних энергетически близких орбиталей, а валентные электроны из-за небольшой энергии ионизации слабо удерживаются в атоме.

    Химическая связь в металлических кристаллах сильно делокализована, т.е. электроны, осуществляющие связь, обобществлены («электронный газ») и перемещаются по всему куску металла, в целом электронейтрального.

    Металлическая связь характерна для металлов в твердом и жидком состоянии. Это свойство агрегатов атомов, расположенных в непосредственной близости друг к другу. Однако в парообразном состоянии атомы металлов, как и всех веществ, связаны между собой ковалентной связью. Пары металлов состоят из отдельных молекул (одноатомных и двухатомных). Прочность связи в кристалле больше, чем в молекуле металла, а потому процесс образования металлического кристалла протекает с выделением энергии.

    Металлическая связь имеет некоторое сходство с ковалентной, поскольку и в ее основе лежит обобществление валентных электронов. Однако электроны, которые осуществляют ковалентную связь, находятся вблизи соединенных атомов и прочно с ними связаны. Электроны же, осуществляющие металлическую связь, свободно перемещаются по всему кристаллу и принадлежат всем его атомам. Именно поэтому кристаллы с ковалентной связью хрупки, а с металлической - пластичны, т.е. они изменяют форму при ударе, прокатываются в тонкие листы и вытягиваются в проволоку.

    Металлической связью объясняются физические свойства металлов.

    Водородная связь

    Водородная связь - это своеобразная химическая связь. Она может быть межмолекулярной и внутримолекулярной.

    Межмолекулярная водородная связь возникает между молекулами, в состав которых входят водород и сильно электроотрицательный элемент - фтор, кислород, азот, реже хлор, сера. Поскольку в такой молекуле общая электронная пара сильно смещена от водорода к атому электроотрицательного элемента, а положительный заряд водорода сконцентрирован в малом объеме, то протон взаимодействует с неподеленной электронной парой другого атома или иона, обобществляя ее. В результате образуется вторая, более слабая связь, получившая название водородной.

    Ранее водородную связь сводили к электростатическому притяжению между протоном и другой полярной группой. Но более правильным следует считать, что в ее образование вносит вклад и донорно-акцепторное взаимодействие. Для этой связи характерны направленность в пространстве и насыщаемость.

    Обычно водородную связь обозначают точками и этим указывают, что она намного слабее ковалентной связи (примерно в 15-20 раз). Тем не менее она ответственна за ассоциацию молекул. Например, образование димеров (в жидком состоянии они наиболее устойчивы) воды и уксусной кислоты можно представить схемами:



    Как видно из этих примеров, посредством водородной связи объединены две молекулы воды, а в случае уксусной кислоты - две молекулы кислоты с образованием циклической структуры.

    Наличием водородных связей объясняется более высокая температура кипения воды (100° С) по сравнению с водородными соединениями элементов подгруппы кислорода (H 2 O , H 2 S , H 2 Te ). В случае воды надо затратить дополнительную энергию на разрушение водородных связей.

    Ковалентная связь осуществляется за счёт обобществления электронов, принадлежащих обоим участвующим во взаимодействии атомам. Электроотрицательности неметаллов достаточно велики, поэтому передачи электронов не происходит.

    Электроны, находящиеся на перекрывающихся электронных орбиталях, поступают в общее пользование. При этом создаётся ситуация, при которой внешние электронные уровни атомов оказываются заполненными, то есть образуется 8-ми или 2-х электронная внешняя оболочка.

    Вконтакте

    Состояние, при котором электронная оболочка заполнена полностью, характеризуется наименьшей энергией, а соответственно, и максимальной устойчивостью.

    Механизмов образования два:

    1. донорно-акцепторный;
    2. обменный.

    В первом случае один из атомов предоставляет свою пару электронов, а второй - свободную электронную орбиталь.

    Во втором - в общую пару приходит по одному электрону от каждого участника взаимодействия.

    В зависимости от того, к какому типу относятся - атомному или молекулярному, соединения с подобным видом связи могут значительно различаться по физико-химическим характеристикам.

    Молекулярные вещества чаще всего газы, жидкость или твёрдые вещества с низкими температурами плавления и кипения, неэлектропроводные, обладающие малой прочностью. К ним можно отнести: водород (H 2), кислород (O 2), азот (N 2), хлор (Cl 2), бром (Br 2), ромбическую серу (S 8), белый фосфор (P 4) и другие простые вещества; диоксид углерода (CO 2), диоксид серы (SO 2), оксид азота V (N 2 O 5), воду (H 2 O), хлороводород (HCl), фтороводород (HF), аммиак (NH 3), метан (CH 4), этиловый спирт (C 2 H 5 OH), органические полимеры и другие.

    Вещества атомные существуют в виде прочных кристаллов, имеющих высокие температуры кипения и плавления, не растворимы в воде и прочих растворителях, многие не проводят электрический ток. Как пример можно привести алмаз, который обладает исключительной прочностью. Это объясняется тем, что алмаз представляет собой кристалл, состоящий из атомов углерода, соединённых ковалентными связями. В алмазе нет отдельных молекул. Также атомным строением обладают такие вещества, как графит, кремний (Si), диоксид кремния (SiO 2), карбид кремния (SiC) и другие.

    Ковалентные связи могут быть не только одинарными (как в молекуле хлора Cl2), но также двойные, как в молекуле кислорода О2, или тройные, как, например, в молекуле азота N2. При этом тройные имеют большую энергию и более прочны, чем двойные и одинарные.

    Ковалентная связь может быть образована как между двумя атомами одного элемента (неполярная), так и между атомами различных химических элементов (полярная).

    Указать формулу соединения с ковалентной полярной связью не представляет труда, если сравнить значения электроотрицательностей, входящих в состав молекул атомов. Отсутствие разницы в электроотрицательности определит неполярность. Если же разница есть, то молекула будет полярна.

    Не пропустите: механизм образования , конкретные примеры.

    Ковалентная неполярная химическая связь

    Характерна для простых веществ неметаллов . Электроны принадлежат атомам в равной степени, и смещения электронной плотности не происходит.

    Примером могут служить следующие молекулы:

    H2, O2, О3, N2, F2, Cl2.

    Исключением являются инертные газы . Их внешний энергетический уровень заполнен полностью, и образование молекул им энергетически не выгодно, в связи с чем они существуют в виде отдельных атомов.

    Также примером веществ с неполярной ковалентной связью будет, например, РН3. Несмотря на то, что вещество состоит из различных элементов, значения электроотрицательностей элементов фактически не различаются, а значит, смещения электронной пары происходить не будет.

    Ковалентная полярная химическая связь

    Рассматривая ковалентную полярную связь, примеров можно привести множество: HCl, H2O, H2S, NH3, CH4, CO2, SO3, CCl4, SiO2, СО.

    образуется между атомами неметаллов с различной электроотрицательностью. При этом ядро элемента с большей электроотрицательностью притягивает общие электроны ближе к себе.

    Схема образования ковалентной полярной связи

    В зависимости от механизма образования общими могут становиться электроны одного из атомов или обоих .

    На картинке наглядно представлено взаимодействие в молекуле соляной кислоты.

    Пара электронов принадлежит и одному атому, и второму, у обоих, таким образом, внешние уровни заполнены. Но более электроотрицательный хлор притягивает пару электронов чуть ближе к себе (при этом она остаётся общей). Разница в электроотрицательности недостаточно большая, чтобы пара электронов перешла к одному из атомов полностью. В результате возникает частичный отрицательный заряд у хлора и частичный положительный у водорода. Молекула HCl является полярной молекулой.

    Физико-химические свойства связи

    Связь можно охарактеризовать следующими свойствами : направленность, полярность, поляризуемость и насыщаемость.

    Ковалентная связь, в зависимости от того, как возникает общая электронная пара, может образовываться по обменному или донорно-акцепторному механизму .

    Обменный механизм образования ковалентной связи реализуется в тех случаях, когда в образова­нии общей электронной пары от каждого атома участвуют и атомная орбиталь, и неспаренный электрон, находящийся на этой орбитали.

    Например, в молекуле водорода. Взаимодействующие атомы водорода, содержащие на атомных s-орбиталях одиночные электроны с противоположными спинами, образуют общую электронную пару, движение которой в молекуле Н 2 осуществляется в границах σ-молекулярной орбитали, возникающей при слия­нии двух s-атомных орбиталей:

    В молекуле аммиака атом азота, имея на четырёх атомных орбиталях внешнего энергетического уровня три одиночных электрона и одну электронную пару, образует с s-электронами трёх ато­мов водорода три общие электронные пары. Эти элек­тронные пары в молекуле NH 3 находятся на трёх σ-молекулярных орбиталях, каждая из которых возникает при слиянии атомной орбитали атома азота с s-орбиталью атомоf водорода:

    Таким образом, в молекуле аммиака атом азота образует три σ- связи с атомами водорода и имеет неподелённую электронную пару.

    Донорно-акцепторный механизм образования ковалентной связи реализуется в тех слу­чаях, когда один нейтральный атом или ион (донор) имеет на атомной орбитали внешнего энергетического уровня электронную пару, а другой ион или нейтральный атом (акцептор) - сво­бодную (вакантную) орбиталь. При слиянии атомных орбиталей возникает молекулярная орбиталь, на которой находится общая электронная пара, ранее принадлежавшая атому-донору:

    По донорно-акцепторному механизму происходит, например, образование ковалентной связи между молекулой аммиака и ионом водорода с возникновением иона аммония + . В молекуле ам­миака у атома азота во внешнем слое имеется свободная электронная пара, что позволяет этой молекуле выступать в роли донора. У иона водорода (акцептора)имеется свободная s-орбиталь. За счёт слияния атомных орбиталей атома азота и иона водо­рода возникает σ-молекулярная орбиталь, а свободная пара электронов атома азота становится общей для соединяющихся атомов:

    Или Н + + NH 3 [ H NH 3 ] +

    В ионе аммония + ковалентная связь N-H, образовавшаяся по донорно-акцепторному механизму, равноценна по энергии и длине трём другим ковалентным связям N-H, образовавшимся по обменному механизму.

    Атом бора образует молекулу фторида бора BF 3 за счёт перекрывания электронных орбиталей, занятых в возбуждённом состоянии неспаренными электронами, с электронными орбиталями фтора. При этом у атома бора сохраняется одна вакантная орбиталь, за счет которой по донорно-акцепторному механизму может образоваться четвёртая химическая связь.

    Связь, образованную по донорно-акцепторному механизму, часто называют донорно-акцепторной, координационной или координативной. Однако это не особый тип связи, а лишь иной механизм образования ковалентной связи.

    Донорно-акцепторный механизм образования ковалентной связи характерен для комплексных соединений: роль акцептора обычно выполня­ют ионы d-металлов, которые обычно могут предоставлять две, четыре или шесть свободных атомных орбиталей s-, p-, d-типа, что значительно расширяет их возможности образовывать ковалент­ные связи.

    Например, ионы Ag + и Сu 2+ соответственно предоставляют две и четыре свобод­ные атомные орбитали, а донором электронных пар могут быть, например, две или четыре молекулы аммиака или цианид-иона:

    Акцептор Донор

    В данных случаях между донорами и акцептором возникают ковалентные связи с образованием комплексных катионов (аммиакатов серебра и меди) или аниона (цианида меди).