Войти
Логопедический портал
  • Как загадать желание на новый год, чтобы оно быстро исполнилось
  • Ударение в русском языке
  • Княжение ярослава мудрого Значение «Русской Правды»
  • Иван Сусанин: интересные факты Интересные события из жизни ивана сусанина
  • Способы быстрого устного умножения чисел
  • Саги викингов читать. Викинги – люди саги. Жизнь и нравы. Проклятое кольцо Андваринаут
  • Разгон в космосе: как гравитация помогает летать в звездные дали? Гравитационный маневр для космических аппаратов Что такое гравитационный маневр

    Разгон в космосе: как гравитация помогает летать в звездные дали? Гравитационный маневр для космических аппаратов Что такое гравитационный маневр

    Размышление о гравитации как явлении. Как всегда сугубо личное мнение.

    Немного информации

    Когда именно люди узнали о силах тяготения так и останется загадкой, очевидно, очень давно. Официально считается, что явлениями всемирного тяготения вплотную занялся Исаак Ньютон, после того, как получил производственную травму яблоком во время прогулки.

    Видимо, вследствие полученной травмы, Исаак Ньютон получил откровение от господа нашего Бога, которое вылилось в соответствующее уравнение:

    F=G(m 1 *m 2)/r 2 (Уравнение №1)

    Где соответственно: F – искомая сила взаимодействия (сила тяготения), m 1, m 2 - массы взаимодействующих тел, r - расстояние между телами, G - гравитационная постоянная.

    Я не буду касаться философии Исаака Ньютона, непосредственного авторства или каких-то других не связанных с фактами наблюдений вещей, если кому интересно, можно посмотреть расследование Вадима Ловчикова или что-то подобное.

    И так, давайте для начала разберем то что нам предлагают под видом этого простого уравнения.

    Первое , на что следует обратить внимание, уравнение №1 имеет радиальную (шаровую симметрию),- это говорит о том, что гравитация не имеет выделанных направлений взаимодействия и все взаимодействия которые она обеспечивает строго симметричны.

    Второе , на что следует обратить внимание, в уравнении №1 нет ни времени, ни каких-либо скоростей, то есть взаимодействие обеспечивается немедленно, без задержки на любом расстоянии.

    Третье , Ньютон указывал на божественную природу гравитации, то есть все вещи в мире взаимодействуют волею божией - гравитация не исключение. Почему взаимодействие происходит именно так,- это воля божия, никакой физической картины мира в нашем понимании у него не было.

    Как видите принципы работы гравитации просты и понятны, они изложены во всех школьных учебниках и транслируются всеми утюгами (за исключением пожалуй третьего принципа), но как мы помним Френсис Бэкон завещал нам постигать природу посредством наблюдений (эмпирически), отвечают ли этому правилу вышеизложенные закономерности?

    Немного фактов

    Инерция , - это явление природы, которое возникает при движении любых тел. Несмотря на всеобщее распространение этого явления, физики до сих пор (если кто знает пусть меня поправят) не могут внятно сказать с чем физически связана инерция, с телом или с пространством вокруг него. Ньютон отлично знал о существовании этого явления, и то что оно влияет на силы взаимодействия гравитирующих тел, но если вы посмотрите на уравнение №1, вы не найдете там и следов инерции, как следствие задача «Трех тел » так и не решена строго.

    Все утюги, всех мастей убеждают меня, что Ньютон-де рассчитал орбиты планет исходя из своего божественного уравнения, конечно я им верю, ведь незадолго до этого Иоганн Кеплер все сделал эмпирически, правда, ни один из утюгов не объясняет, как в своих расчетах Исаак Ньютон учитывал инерцию, ни в одном учебнике пусть даже и университетском никто вам этого не скажет.

    Следствие из этого очень простое, британские ученые подогнали результаты вычислений под труды Кеплера, уравнение №1 не учитывает инерции и скорости тел, поэтому совершенно бесполезно для расчетов конкретных орбит небесных тел. Говорить о том что философия Ньютона хоть как-то описывает механизм инерции физически, даже не смешно.

    Гравитационный маневр - явление природы, когда при взаимодействии гравитирующих тел одно из них ускоряется другое замедляется. Учитывая совершенную радиальную симметричность уравнения №1, а так же мгновенную скорость распространения гравитации согласно этому уравнению, данный физический эффект невозможен, весь добавленный импульс будет отнят при взаимном удалении тел и взаимодействующие тела останутся «при своих». Работать с гравитационными маневрами научились исходя из эмпирических наблюдений (полетов в космос), согласно теории Ньютона, в этом случае возможно только изменение направления движения тел, но не их импульса, что явно противоречит опытным данным.

    Дисковидные структуры - большая часть видимой вселенной занята дисковидными структурами, это и галактики, и диски планетарных систем, планетарные кольца. Учитывая полную симметричность уравнения №1,- это очень странный физический факт. Согласно этому уравнению подавляющее большинство структур должно было бы иметь шаровую симметричную форму, астрономические наблюдения напрямую противоречат этому утверждению. Официальная космогоническая теория о конденсации планет из пылевого облака никак не объясняет наличие плоских дисков планетарных систем вокруг звезд. Таким же исключением являются и кольца Сатурна , сформированные якобы при ударе неких тел на орбите Сатурна, почему сформировалась именно плоская а не шаровая структура?

    Наблюдаемые нами астрономические явления напрямую противоречат основным постулатам симметричности теории тяготения Ньютона.

    Приливная активность - как утверждает современная наука, приливные волны в морях Земли формируются совместным гравитационным влиянием Луны и Солнца. Безусловно влияние Луны и Солнца на приливы есть, но вот в чем оно заключается вопрос на мой взгляд достаточно дискуссионный, хотелось бы увидеть интерактивную симуляцию где были бы наложены положения Луны и Солнца, а так же приливов, что-то я пока не видел таких хороших симуляций, что очень странно учитывая любовь современных ученых к компьютерным симуляциям.

    Вопросов по приливам гораздо больше чем ответов, начать хотя бы с формирования «приливного эллипса», я понимаю, что гравитация вызывает «пучность» вод на стороне ближней к Луне или Солнцу, а что вызывает аналогичную «пучность» на обратной стороне Земли, если смотреть на уравнение №1 такого в принципе не может быть.

    Добрые физики договорились до того, что ведущее значение в приливных силах имеет не модуль силы, а ее градиент, типа у Луны градиент силы больше она больше влияет на приливы, у Солнца градиент меньше, оно меньше влияет на приливы, но простите в уравнении №1 ничего такого нет, да Ньютон ничего такого и близко не говорил, как это понимать? Очевидно, как очередную подгонку под известный результат от британских «ученых». Когда бурления приливной субстанции достигли определенного уровня британские «ученые» решили еще больше запутать благодарных слушателей, что из этого правда, совершенно не ясно.

    У меня нет мнения относительно верного алгоритма расчета приливов, но все косвенные признаки свидетельствуют о том, что его нет ни у кого.

    Эксперимент Кавендиша - определение «гравитационной постоянной» с помощью крутильных весов. Это настоящий позор современной физической науки, причем, то что это позор, было ясно еще во времена Кавендиша (1790гг), но он не был бы настоящим «британским» ученым, если бы обращал внимание на унылый внешний мир, безобразный с физической точки зрения эксперимент вошел во все возможные учебники физики и прибывает там до сих пор. Только последнее время «светилы» от науки начинают выказывать легкое беспокойство по поводу его воспроизводимости.

    Опыт принципиально невоспроизводим в условиях Земли. Вопрос даже не в «эффекте Казимира», который предсказан задолго до Казимира, не в тепловых искажениях конструкции, и электромагнитном взаимодействии грузов. Основной вопрос состоит в долгопериодических собственных колебаниях установки, устранить это искажение в земных условиях невозможно никаким образом.

    Что за цифр намерили британские ученые я лично сказать не берусь, я могу сказать только то, что в соответствии с последними физическими исследованиями, - это все мусор, не имеющий никакого отношения к реальным гравитационным взаимодействиям. Таким образом этот опыт не может служить для доказательства или опровержения чего либо, - это просто мусор с которым ничего путного сделать нельзя, и уж тем более нельзя узнать значение «гравитационной постоянной».

    Немного ругани

    Можно было бы перечислять еще множество фактов, но не вижу в этом особого смысла, - это все равно ни на что не влияет, «физики» от гравитации четыреста лет топчутся на одном месте, видимо им гораздо важнее не то, что происходит в природе, а то что сказал какой-то англиканский богослов, очевидно, нобелевские премии дают только за это.

    Сейчас очень модно сокрушаться, что молодые люди «игнорируют» физику, не испытывают уважения к авторитетам и прочую чушь. Какое может быть уважение, если манипуляции наших британских партнеров видны без контактных линз? Физические данные на прямую противоречат всем постулатам науки, но сову продолжают исправно натягивать на глобус и конца-края этому увлекательному занятию не видно. Молодые люди видят как делаются дела наши перед господом, учитывая современную информационную обеспеченность и я уверен делают соответствующие выводы.

    Я думаю, что самая большая тайна современной физики,- это конкретные значения сил гравитации в солнечной системе, иначе с чего тогда столько аварий при приземлении (прилунении, привенерении, примарсении) спутников, но все как заведенные продолжают читать мантру про «великого ученого» и его законы, очевидно не хотят выдавать свои ноу-хау заработанные потом и кровью.

    Еще больше раздражает современная космология, у людей по сути нет никаких фактов о гравитации, но они уже придумали темную материю, темную энергию и черные дыры и гравитационные волны. Может быть давайте сначала разберемся хотя бы с окрестностями Земли и Солнца, запустим пробные зонды и узнаем чо по чем, а потому уже будем городить различную шизофрению, но нет британские «ученые» не таковы. В результате мы имеем вал «научных» публикаций, общая ценность которых находится где-то в надире.

    Тут мне возразят, ну как же, есть ведь еще Эйнштейн и его клика. Знаете, эти добрые люди переплюнули самого Ньютона, Ньютон хотя бы, сказал что гравитационные силы есть, пусть и божьей волей, Эйнштейн объявил их мнимыми, тела дескать летают потому что мне (Эйнштейну) так хочется, и никак иначе, в своих штудиях он умудрился потерять даже Бога. Поэтому я даже не буду осуждать эти агностические выверты больного сознания, я просто не могу считать это научными данными. Это сказка, эссе, философия, что угодно, только не эмпирика.

    Выводы

    Вся доступная история, особенно новейшая, убедительно доказывает, что бесплатно наши британские партнеры ничего не дают, а тут вдруг расщедрились на целую теорию гравитации, это как минимум подозрительно.

    Лично я совершенно не верю в их добрые намерения, все физические данные особенно полученные от наших партнеров нуждаются в тщательном централизованном аудите, в противном случае мы еще тысячу лет будем почесывать эго всяким отвратительным мракобесам, а они будут нас втягивать в бесконечные неприятности с человеческими и материальными жертвами.

    Главный вывод статьи заключен в том, что гравитация как явление находится на том же уровне исследованности, по крайней мере в области публичных знаний, что и 400 лет назад. Давайте уж наконец займемся исследованиями реального мира, а не лобызанием британских мощей.

    Впрочем, каждый волен составить свое собственное мнение на основании имеющихся фактов.


    Существует еще один способ разогнать объект до скорости, близкой к скорости света, - воспользоваться «эффектом пращи», При отправке космических зондов к другим планетам NASA иногда заставляет их совершить маневр вокруг соседней планеты, чтобы, воспользовавшись «эффектом пращи», дополнительно разогнать аппарат. Так NASA экономит ценное ракетное топливо. Именно таким образом аппарату «Вояджер-2» удалось долететь до Нептуна, орбита которого лежит у самого края Солнечной системы.

    Фримен Дайсон, физик из Принстона, выдвинул интересное предложение. Если когда-нибудь в далеком будущем человечеству удастся обнаружить в космосе две нейтронные звезды, обращающиеся вокруг общего центра с большой скоростью, то земной корабль, пролетев совсем рядом с одной из этих звезд, может за счет гравитационного маневра набрать скорость, равную чуть ли не трети скорости света. В результате корабль разогнался бы до околосветовых скоростей за счет гравитации. Теоретически такое может получиться.

    Только на самом деле этот способ разогнаться при помощи гравитации не сработает. (Закон сохранения энергии говорит о том, что тележка на американских горках, разгоняясь на спуске и замедляясь на подъеме, оказывается наверху ровно с той же скоростью, что и в самом начале - никакого приращения энергии не происходит. Точно так же, обернувшись вокруг неподвижного Солнца, мы закончим ровно с той же скоростью, с какой начали маневр.) Метод Дайсона с двумя нейтронными звездами в принципе мог бы сработать, но только потому, что нейтронные звезды быстро движутся. Космический аппарат, использующий гравитационный маневр, получает приращение энергии за счет движения планеты или звезды. Если они неподвижны, подобный маневр ничего не даст.

    А предложение Дайсона, хотя и может сработать, ничем не поможет сегодняшним земным ученым - ведь для того, чтобы наведаться к быстро вращающимся нейтронным звездам, потребуется для начала построить звездолет.

    Из пушки в небеса

    Еще один хитроумный способ вывести корабль в космос и разогнать до фантастических скоростей - выстрелить им из рельсовой электромагнитной «пушки», которую описывали в своих произведениях Артур Кларк и другие авторы-фантасты. В настоящее время этот проект всерьез рассматривается как возможная часть противоракетного щита программы «звездных войн».

    Способ заключается в том, чтобы вместо ракетного топлива или пороха использовать для разгона ракеты до высоких скоростей энергию электромагнетизма.

    В простейшем случае рельсовая пушка представляет собой два параллельных провода или рельса; реактивный снаряд, или ракета, «сидит» на обоих рельсах, образуя U-образную конфигурацию. Еще Майкл Фарадей знал, что на рамку с электрическим током в магнитном поле действует сила. (Вообще говоря, на этом принципе работают все электродвигатели.) Если пропустить через рельсы и снаряд электрический ток силой в миллионы ампер, вокруг всей системы возникнет чрезвычайно мощное магнитное поле, которое, в свою очередь, погонит снаряд по рельсам, разгонит его до громадной скорости и вышвырнет в пространство с оконечности рельсовой системы.

    Во время испытаний рельсовые электромагнитные пушки успешно выстреливали металлические объекты с громадными скоростями, разгоняя их на очень короткой дистанции. Что замечательно, в теории обычная рельсовая пушка способна выстреливать металлический снаряд со скоростью 8 км/с; этого достаточно, чтобы вывести его на околоземную орбиту. В принципе весь ракетный флот NASA можно было бы заменить рельсовыми пушками, которые прямо с поверхности Земли выстреливали бы полезный груз на орбиту.

    Рельсовая пушка имеет существенные преимущества по отношению к химическим пушкам и ракетам. Когда вы стреляете из ружья, максимальная скорость, с которой расширяющиеся газы способны вытолкнуть пулю из ствола, ограничена скоростью распространения ударной волны. Жюль Берн в классическом романе «С Земли на Луну» выстрелил снаряд с астронавтами к Луне при помощи пороха, но на самом деле несложно подсчитать, что максимальная скорость, которую может придать снаряду пороховой заряд, во много раз меньше скорости, необходимой для полета к Луне. Рельсовая же пушка не использует взрывное расширение газов и потому никак не зависит от скорости распространения ударной волны.

    Но у рельсовой пушки свои проблемы. Объекты на ней ускоряются так быстро, что они, как правило, сплющиваются из-за столкновения... с воздухом. Полезный груз оказывается сильно деформированным в процессе «выстрела» из дула рельсовой пушки, потому что когда снаряд врезается в воздух, это все равно как если бы он ударился о кирпичную стенку. Кроме того, при разгоне снаряд испытывает громадное ускорение, которое само по себе способно сильно деформировать груз. Рельсы необходимо регулярно заменять, так как снаряд при движений также деформирует их. Более того, перегрузки в рельсовой пушке смертельны для людей; человеческие кости просто не выдержат подобного ускорения и разрушатся.

    Одно из решений состоит в том, чтобы установить рельсовую пушку на Луне. Там, за пределами земной атмосферы, снаряд сможет беспрепятственно разгоняться в вакууме открытого космоса. Но даже на Луне снаряд при разгоне будет испытывать громадные перегрузки, способные повредить и деформировать полезный груз. В определенном смысле рельсовая пушка - антипод лазерного паруса, который набирает скорость постепенно в течение долгого времени. Ограничения рельсовой пушки определяются именно тем, что она на небольшом расстоянии и за небольшое время передает телу громадную энергию.

    Рельсовая пушка, способная выстрелить аппарат к ближайшим звездам, стала бы весьма дорогостоящим сооружением. Так, один из проектов предусматривает строительство в открытом космосе рельсовой пушки длиной в две трети расстояния от Земли до Солнца. Эта пушка должна будет накапливать солнечную энергию, а затем разом расходовать ее, разгоняя десятитонную полезную нагрузку до скорости, равной трети скорости света. При этом «снаряд» будет испытывать перегрузку в 5000 g. Разумеется, «пережить» такой пуск смогут только самые выносливые корабли-роботы.


    Гравитационный манёвр для ускорения объекта Гравитационный манёвр для замедления объекта Гравитационный манёвр разгон, замедление или изменение направления полёта космического аппарата, под действием гравитационных полей небесных тел.… … Википедия

    Гравитационный манёвр для ускорения объекта Гравитационный манёвр для замедления объекта Гравитационный манёвр разгон, замедление или изменение направления полёта космического аппарата, под действием гравитационных полей небесных тел.… … Википедия

    - … Википедия

    Это один из основных геометрических параметров объектов, образованных посредством конического сечения. Содержание 1 Эллипс 2 Парабола 3 Гипербола … Википедия

    Искусственного спутника орбитальный манёвр, целью которого (в общем случае) является перевод спутника на орбиту с другим наклонением. Существуют два вида такого маневра: Изменение наклонения орбиты к экватору. Производится включением… … Википедия

    Раздел небесной механики, изучающий движение искусственных космических тел: искусственных спутников, межпланетных станций и других космических кораблей. В сферу задач астродинамики входят расчёт орбит космических кораблей, определение параметров… … Википедия

    Эффект Оберта в космонавтике эффект, проявляющийся в том, что ракетный двигатель, движущийся с высокой скоростью, создает больше полезной энергии, чем такой же двигатель, движущийся медленно. Эффект Оберта вызывается тем, что при… … Википедия

    Заказчик … Википедия

    И эквипотенциальные поверхности системы двух тел Точки Лагранжа, точки либрации (лат. librātiō раскачивание) или L точки … Википедия

    Книги

    • Вещи ХХ века в рисунках и фотографиях. Вперед в космос! Открытия и достижения. Комплект из 2-х книг , . "Вперёд, в космос! Открытия и достижения" С давних времён человек мечтал оторваться от земли и покорить небо, а затем и космос. Больше ста лет назад изобретатели уже задумывались о создании…
    • Вперёд, в космос! Открытия и достижения , Климентов Вячеслав Львович, Сигорская Юлия Александровна. С давних времён человек мечтал оторваться от земли и покорить небо, а затем и космос. Больше ста лет назад изобретатели уже задумывались о создании космических кораблей, но начало космической…

    , Земли , Марса и даже Луны .

    Физическая суть процесса

    Рассмотрим траекторию космического аппарата, пролетающего вблизи какого-нибудь большого небесного тела, например, Юпитера . В начальном приближении мы можем пренебречь действием на космический аппарат гравитационных сил от других небесных тел.

    Сложную комбинацию гравитационных манёвров использовали АМС «Кассини » (для разгона аппарат использовал гравитационное поле трёх планет - Венеры (дважды), Земли и Юпитера) и «Розетта » (четыре гравитационных манёвра около Земли и Марса).

    В искусстве

    Художественное описание подобного манёвра можно встретить в фантастическом романе А. Кларка «2010: Одиссея 2 ».

    В научно-фантастическом фильме «Интерстеллар » орбитальной станции «Эндюранс» не хватает топлива для достижения третьей планеты, находящейся рядом с чёрной дырой «Гаргантюа» (названа в честь литературного великана-обжоры). Главный герой Купер предпринимает рискованный шаг: Эндюранс должна пройти поблизости от горизонта событий Гаргантюа, тем самым придав станции ускорение за счёт притяжения чёрной дыры.

    В научно-фантастическом романе «Марсианин » и одноимённом фильме , используя гравитационный манёвр вокруг Земли, команда разворачивает с ускорением корабль «Гермес» для повторного полёта на Марс.

    См. также

    Напишите отзыв о статье "Гравитационный манёвр"

    Примечания

    Ссылки

    • // crydee.sai.msu.ru
    • (навигационные расчеты для космического симулятора «Орбитер», позволяет рассчитывать в том числе гравитационные манёвры)
    • // novosti-kosmonavtiki.ru

    Отрывок, характеризующий Гравитационный манёвр

    – О, господи!
    – Что толкаешься то, – про тебя одного огонь, что ли? Вишь… развалился.
    Из за устанавливающегося молчания послышался храп некоторых заснувших; остальные поворачивались и грелись, изредка переговариваясь. От дальнего, шагов за сто, костра послышался дружный, веселый хохот.
    – Вишь, грохочат в пятой роте, – сказал один солдат. – И народу что – страсть!
    Один солдат поднялся и пошел к пятой роте.
    – То то смеху, – сказал он, возвращаясь. – Два хранцуза пристали. Один мерзлый вовсе, а другой такой куражный, бяда! Песни играет.
    – О о? пойти посмотреть… – Несколько солдат направились к пятой роте.

    Пятая рота стояла подле самого леса. Огромный костер ярко горел посреди снега, освещая отягченные инеем ветви деревьев.
    В середине ночи солдаты пятой роты услыхали в лесу шаги по снегу и хряск сучьев.
    – Ребята, ведмедь, – сказал один солдат. Все подняли головы, прислушались, и из леса, в яркий свет костра, выступили две, держащиеся друг за друга, человеческие, странно одетые фигуры.
    Это были два прятавшиеся в лесу француза. Хрипло говоря что то на непонятном солдатам языке, они подошли к костру. Один был повыше ростом, в офицерской шляпе, и казался совсем ослабевшим. Подойдя к костру, он хотел сесть, но упал на землю. Другой, маленький, коренастый, обвязанный платком по щекам солдат, был сильнее. Он поднял своего товарища и, указывая на свой рот, говорил что то. Солдаты окружили французов, подстелили больному шинель и обоим принесли каши и водки.
    Ослабевший французский офицер был Рамбаль; повязанный платком был его денщик Морель.
    Когда Морель выпил водки и доел котелок каши, он вдруг болезненно развеселился и начал не переставая говорить что то не понимавшим его солдатам. Рамбаль отказывался от еды и молча лежал на локте у костра, бессмысленными красными глазами глядя на русских солдат. Изредка он издавал протяжный стон и опять замолкал. Морель, показывая на плечи, внушал солдатам, что это был офицер и что его надо отогреть. Офицер русский, подошедший к костру, послал спросить у полковника, не возьмет ли он к себе отогреть французского офицера; и когда вернулись и сказали, что полковник велел привести офицера, Рамбалю передали, чтобы он шел. Он встал и хотел идти, но пошатнулся и упал бы, если бы подле стоящий солдат не поддержал его.
    – Что? Не будешь? – насмешливо подмигнув, сказал один солдат, обращаясь к Рамбалю.
    – Э, дурак! Что врешь нескладно! То то мужик, право, мужик, – послышались с разных сторон упреки пошутившему солдату. Рамбаля окружили, подняли двое на руки, перехватившись ими, и понесли в избу. Рамбаль обнял шеи солдат и, когда его понесли, жалобно заговорил:
    – Oh, nies braves, oh, mes bons, mes bons amis! Voila des hommes! oh, mes braves, mes bons amis! [О молодцы! О мои добрые, добрые друзья! Вот люди! О мои добрые друзья!] – и, как ребенок, головой склонился на плечо одному солдату.
    Между тем Морель сидел на лучшем месте, окруженный солдатами.
    Морель, маленький коренастый француз, с воспаленными, слезившимися глазами, обвязанный по бабьи платком сверх фуражки, был одет в женскую шубенку. Он, видимо, захмелев, обнявши рукой солдата, сидевшего подле него, пел хриплым, перерывающимся голосом французскую песню. Солдаты держались за бока, глядя на него.
    – Ну ка, ну ка, научи, как? Я живо перейму. Как?.. – говорил шутник песенник, которого обнимал Морель.
    Vive Henri Quatre,
    Vive ce roi vaillanti –
    [Да здравствует Генрих Четвертый!
    Да здравствует сей храбрый король!
    и т. д. (французская песня) ]
    пропел Морель, подмигивая глазом.
    Сe diable a quatre…
    – Виварика! Виф серувару! сидябляка… – повторил солдат, взмахнув рукой и действительно уловив напев.
    – Вишь, ловко! Го го го го го!.. – поднялся с разных сторон грубый, радостный хохот. Морель, сморщившись, смеялся тоже.
    – Ну, валяй еще, еще!
    Qui eut le triple talent,
    De boire, de battre,
    Et d"etre un vert galant…
    [Имевший тройной талант,
    пить, драться
    и быть любезником…]
    – A ведь тоже складно. Ну, ну, Залетаев!..
    – Кю… – с усилием выговорил Залетаев. – Кью ю ю… – вытянул он, старательно оттопырив губы, – летриптала, де бу де ба и детравагала, – пропел он.
    – Ай, важно! Вот так хранцуз! ой… го го го го! – Что ж, еще есть хочешь?
    – Дай ему каши то; ведь не скоро наестся с голоду то.
    Опять ему дали каши; и Морель, посмеиваясь, принялся за третий котелок. Радостные улыбки стояли на всех лицах молодых солдат, смотревших на Мореля. Старые солдаты, считавшие неприличным заниматься такими пустяками, лежали с другой стороны костра, но изредка, приподнимаясь на локте, с улыбкой взглядывали на Мореля.
    – Тоже люди, – сказал один из них, уворачиваясь в шинель. – И полынь на своем кореню растет.
    – Оо! Господи, господи! Как звездно, страсть! К морозу… – И все затихло.
    Звезды, как будто зная, что теперь никто не увидит их, разыгрались в черном небе. То вспыхивая, то потухая, то вздрагивая, они хлопотливо о чем то радостном, но таинственном перешептывались между собой.

    Х
    Войска французские равномерно таяли в математически правильной прогрессии. И тот переход через Березину, про который так много было писано, была только одна из промежуточных ступеней уничтожения французской армии, а вовсе не решительный эпизод кампании. Ежели про Березину так много писали и пишут, то со стороны французов это произошло только потому, что на Березинском прорванном мосту бедствия, претерпеваемые французской армией прежде равномерно, здесь вдруг сгруппировались в один момент и в одно трагическое зрелище, которое у всех осталось в памяти. Со стороны же русских так много говорили и писали про Березину только потому, что вдали от театра войны, в Петербурге, был составлен план (Пфулем же) поимки в стратегическую западню Наполеона на реке Березине. Все уверились, что все будет на деле точно так, как в плане, и потому настаивали на том, что именно Березинская переправа погубила французов. В сущности же, результаты Березинской переправы были гораздо менее гибельны для французов потерей орудий и пленных, чем Красное, как то показывают цифры.
    Единственное значение Березинской переправы заключается в том, что эта переправа очевидно и несомненно доказала ложность всех планов отрезыванья и справедливость единственно возможного, требуемого и Кутузовым и всеми войсками (массой) образа действий, – только следования за неприятелем. Толпа французов бежала с постоянно усиливающейся силой быстроты, со всею энергией, направленной на достижение цели. Она бежала, как раненый зверь, и нельзя ей было стать на дороге. Это доказало не столько устройство переправы, сколько движение на мостах. Когда мосты были прорваны, безоружные солдаты, московские жители, женщины с детьми, бывшие в обозе французов, – все под влиянием силы инерции не сдавалось, а бежало вперед в лодки, в мерзлую воду.
    Стремление это было разумно. Положение и бегущих и преследующих было одинаково дурно. Оставаясь со своими, каждый в бедствии надеялся на помощь товарища, на определенное, занимаемое им место между своими. Отдавшись же русским, он был в том же положении бедствия, но становился на низшую ступень в разделе удовлетворения потребностей жизни. Французам не нужно было иметь верных сведений о том, что половина пленных, с которыми не знали, что делать, несмотря на все желание русских спасти их, – гибли от холода и голода; они чувствовали, что это не могло быть иначе. Самые жалостливые русские начальники и охотники до французов, французы в русской службе не могли ничего сделать для пленных. Французов губило бедствие, в котором находилось русское войско. Нельзя было отнять хлеб и платье у голодных, нужных солдат, чтобы отдать не вредным, не ненавидимым, не виноватым, но просто ненужным французам. Некоторые и делали это; но это было только исключение.

    Если ракета пролетит рядом с планетой, её скорость изменится. Либо уменьшится, либо возрастёт. Это зависит от того, с какой стороны от планеты она пролетит.

    Когда американские космические аппараты «Вояджеры» совершали свой знаменитый Гранд тур по внешней Солнечной системе, они выполнили несколько так называемых гравитационных манёвров вблизи планет-гигантов.
    Больше всего повезло «Вояджеру-2», который пролетел мимо всех четырёх больших планет. График его скорости см. на рисунке:

    Из графика видно, что после каждого сближения с планетой (кроме Нептуна), скорость космического аппарата возрастала на несколько километров в секунду.

    На первый взгляд это может показаться странным: объект влетает в гравитационное поле и ускоряется, затем вылетает из поля и тормозится. Скорость прилёта должна равняться скорости вылета. Откуда появляется дополнительная энергия?
    Дополнительная энергия появляется потому, что есть третье тело – Солнце. При пролёте рядом с планетой космический аппарат обменивается с ней импульсом и энергией. Если при таком обмене гравитационная энергия планеты в поле Солнца уменьшается, то кинетическая энергия космического аппарата (КА) увеличивается, и наоборот.

    Как должен пролететь мимо планеты КА, чтобы его скорость возросла? Ответить на этот вопрос нетрудно. Пусть КА пересечет орбиту планеты прямо перед ней. В этом случае, получив дополнительный импульс в направлении на планету, он передаст ей дополнительный импульс в противоположном направлении, то есть в направлении её движения. В результате планета перейдёт на чуть более высокую орбиту, и её энергия возрастёт. Энергия КА при этом, соответственно, уменьшится. Если же КА пересечёт орбиту позади планеты, то он, чуть-чуть притормозив её движение, переведёт планету на более низкую орбиту. Скорость КА при этом возрастёт.

    Конечно, масса КА несоизмерима с массой планеты. Поэтому изменение орбитальных параметров планеты при гравитационном манёвре бесконечно малая величина, не поддающаяся измерению. Тем не менее, энергия планеты изменяется, и мы можем убедиться в этом, проведя гравитационный манёвр и увидев, что скорость КА изменяется. Вот, к примеру, как пролетел «Вояджер-2» вблизи Юпитера 9 июля 1979 года (см. рис.). При подлёте к Юпитеру скорость космического аппарата составляла 10 км/сек. В момент максимального сближения она увеличилась до 28 км/сек. А после того, как «Вояджер-2» вылетел из гравитационного поля газового гиганта, уменьшилась до 20 км/сек. Таким образом, в результате гравитационного манёвра скорость космического аппарата возросла в два раза и стал гиперболической. То есть превысила скорость, необходимую для вылета из Солнечной системы. На орбите Юпитера скорость вылета из Солнечной системы около 18 км/сек.

    Из этого примера видно, что Юпитер (или другая планета) может разогнать какое-нибудь тело до гиперболической скорости. А значит, он может «выбросить» это тело из Солнечной системы. Может быть, современные космогонисты правы? Может быть, действительно планеты-гиганты выбросили ледяные глыбы на далёкие окраины Солнечной системы и, таким образом, сформировали кометное облако Оорта.
    Прежде чем ответить на этот вопрос, посмотрим, на какие гравитационные манёвры способны планеты?

    2. Принципы гравитационного манёвра

    Впервые я познакомился с гравитационным манёвром в 9-м классе на краевой олимпиаде по физике. Задача была такая. С Земли стартует ракета со скоростью V (достаточна, чтобы вылететь из поля притяжения). У ракеты есть двигатель с тягой F , который может работать время t . В какой момент времени нужно включить двигатель, чтобы конечная скорость ракеты была максимальная? Сопротивлением воздуха пренебречь.

    Сначала мне показалось, что не важно, когда включить двигатель. Ведь вследствие закона сохранения энергии, конечная скорость ракеты должна быть одинаковой в любом случае. Оставалось посчитать конечную скорость ракеты в двух случаях: 1. двигатель включаем в начале, 2. двигатель включаем после вылета из поля притяжения Земли. После чего сравнить результаты и убедиться, что конечная скорость ракеты в обоих случаях одинакова. Но потом я вспомнил, что мощность равна: сила тяги умножить на скорость. Поэтому мощность ракетного двигателя будет максимальна, если включить двигатель сразу на старте, когда скорость ракеты максимальна. Итак, правильный ответ: двигатель включаем сразу же, тогда конечная скорость ракеты будет максимальной.

    И хотя я задачу решил правильно, но проблема осталась. Конечная скорость, а, значит, и энергия ракеты ЗАВИСИТ от того, в какой момент времени включить двигатель. Вроде бы явное нарушение закона сохранения энергии. Или нет? В чём тут дело? Энергия должна сохраняться! На все эти вопросы я пытался ответить уже после олимпиады.

    Пусть у нас есть ракета массы М с двигателем, который создаёт тягу силой F . Поместим эту ракету в пустое пространство (вдали от звёзд и планет) и включим двигатель. С каким ускорением будет двигаться ракета? Ответ мы знаем из Второго закона Ньютона: ускорение a равно:

    a = F/M

    Теперь перейдём в другую инерциальную систему отсчёта, в которой ракета движется с большой скоростью, скажем, 100 км/сек. Чему равно ускорение ракеты в этой системе отсчёта?
    Ускорение НЕ ЗАВИСИТ от выбора инерциальной системы отсчёта, поэтому оно будет ТЕМ ЖЕ САМЫМ:

    a = F/M

    Масса ракеты также не изменяется (100 км/сек это ещё не релятивистский случай), поэтому и сила тяги F будет ТОЙ ЖЕ САМОЙ. И, следовательно, мощность ракеты ЗАВИСИТ от её скорости. Ведь мощность равна силе, умноженной на скорость. Получается, что если ракета движется со скоростью 100 км/сек, то мощность её двигателя в 100 раз мощнее, чем ТОЧНО ТАКОГО ЖЕ двигателя, находящегося на ракете, движущейся со скоростью 1 км/сек.

    На первый взгляд это может показаться странным и даже парадоксальным. Откуда берётся огромная дополнительная мощность? Энергия ведь должна сохраняться!

    Давайте разберёмся в этом вопросе.


    Ракета всегда движется на реактивной тяге: она выбрасывает в космос различные газы с высокой скоростью. Для определённости предположим, что скорость выброса газов 10 км/сек. Если ракета движется со скоростью 1 км/сек, то её двигатель разгоняет в основном не ракету, а ракетное топливо. Поэтому мощность двигателя по разгону ракеты не высока. А вот если ракета движется со скоростью 10 км/сек, то выброшенное топливо будет ПОКОИТЬСЯ относительно внешнего наблюдателя, то есть, вся мощность двигателя будет тратится на разгон ракеты. А если ракета движется со скоростью 100 км/сек? В этом случае выброшенное топливо будет двигаться со скоростью 90 км/сек. То есть, скорость топлива УМЕНЬШИТСЯ от 100 до 90 км/сек. И ВСЯ разность кинетической энергии топлива в силу закона сохранения энергии будет передана ракете. Поэтому мощность ракетного двигателя при таких скоростях значительно возрастёт.

    Проще говоря, у быстро двигающейся ракеты её топливо обладает огромной кинетической энергией. И из этой энергии черпается дополнительная мощность для разгона ракеты. Теперь осталось сообразить, как это свойство ракеты можно использовать на практике.

    3. Практическое применение

    Предположим, в недалёком будущем вы собрались лететь на ракете в систему Сатурна на Титан:

    чтобы исследовать анаэробные формы жизни.

    Долетели до орбиты Юпитера и выяснилось, что скорость ракеты упала почти до нуля. Не рассчитали как следует траекторию полёта или топливо оказалось контрафактным. А может, метеорит попал в топливный отсек, и почти всё топливо было потеряно. Что делать?

    У ракеты есть двигатель и остался небольшой запас горючего. Но максимум, на что способен двигатель – увеличить скорость ракеты на 1 км/сек. Этого явно недостаточно, чтобы долететь до Сатурна. И вот пилот предлагает такой вариант.

    «Входим в поле притяжения Юпитера и падаем на него. В результате Юпитер разгоняет ракету до огромной скорости – примерно 60 км/сек. Когда ракета разгонится до этой скорости, включаем двигатель. Мощность двигателя при такой скорости возрастёт многократно. Затем вылетаем из поля притяжения Юпитера. В результате такого гравитационного манёвра скорость ракеты возрастает не на 1 км/сек, а значительно больше. И мы сможем долететь до Сатурна».

    Но кто-то возражает.

    «Да, мощность ракеты вблизи Юпитера возрастёт. Ракета получит дополнительную энергию. Но, вылетая из поля притяжения Юпитера, мы всю эту дополнительную энергию потеряем. Энергия должна остаться в потенциальной яме Юпитера, иначе будет что-то вроде вечного двигателя, а это невозможно. Поэтому пользы от гравитационного манёвра не будет. Только зря время потратим».

    Что вы об этом думаете?

    Итак, ракета находится недалеко от Юпитера и почти неподвижна относительно него. У ракеты есть двигатель с топливом, которого хватит, чтобы увеличить скорость ракеты только на 1 км/сек. Чтобы повысить КПД двигателя, предлагается совершить гравитационный манёвр: «уронить» ракету на Юпитер. Она будет двигаться в его поле притяжения по параболе (см. фото). И в самой низкой точке траектории (помечена красным крестиком на фото) включить двигатель. Скорость ракеты вблизи Юпитера составит 60 км/сек. После того, как двигатель её дополнительно разгонит, скорость ракеты возрастёт до 61 км/сек. Какая скорость будет у ракеты, когда она вылетит из поля притяжения Юпитера?

    Эта задача по силам школьнику старших классов, если, конечно, он хорошо знает физику. Сначала нужно написать формулу для суммы потенциальной и кинетической энергий. Затем вспомнить формулу для потенциальной энергии в поле тяготения шара. Посмотреть в справочнике, чему равна гравитационная постоянная, а также масса Юпитера и его радиус. Используя закон сохранения энергии и произведя алгебраические преобразования, получить общую конечную формулу. И наконец, подставив в формулу все числа и проделав вычисления, получить ответ. Я понимаю, что никому (почти никому) не охота вникать в какие-то формулы, поэтому постараюсь, не напрягая вас никакими уравнениями, объяснить решение этой задачи «на пальцах». Надеюсь, получится!

    Если ракета неподвижна, её кинетическая энергия равна нулю. А если ракета движется со скоростью 1 км/сек, то будем считать, что её энергия 1 единица. Соответственно, если ракета движется со скоростью 2 км/сек, то её энергия 4 единицы, если 10 км/сек, то 100 единиц и т.д. Это понятно. Половину задачи мы уже решили.

    В точке, помеченной крестиком:

    скорость ракеты 60 км/сек, а энергия 3600 единиц. 3600 единиц достаточно, чтобы вылететь из поля притяжения Юпитера. После разгона ракеты её скорость стала 61 км/сек, а энергия, соответственно, 61 в квадрате (берём калькулятор) 3721 единицы. Когда ракета вылетает из поля притяжения Юпитера, она тратит только 3600 единиц. Остаётся 121 единица. Это соответствует скорости (берём корень квадратный) 11 км/сек. Задача решена. Это не приближённый, а ТОЧНЫЙ ответ.

    Мы видим, что гравитационный манёвр можно использовать для получения дополнительной энергии. Вместо того, чтобы разогнать ракету до 1 км/сек, её можно разогнать до 11 км/сек (энергия в 121 раз больше, КПД – 12 тысяч процентов!), если рядом будет какое-нибудь массивное тело вроде Юпитера.

    За счёт чего мы получили ОГРОМНЫЙ энергетический выигрыш? За счёт того, что оставили израсходованное топливо не в пустом пространстве вблизи ракеты, а в глубокой потенциальной яме, созданной Юпитером. Израсходованное топливо получило большую потенциальную энергию со знаком МИНУС. Поэтому ракета получила большую кинетическую энергию со знаком ПЛЮС.

    4. Поворот вектора скорости вблизи планеты

    Предположим, мы пролетаем на ракете вблизи Юпитера и хотим увеличить её скорость. Но топлива у нас НЕТ. Скажем так, у нас есть немного топлива, чтобы подкорректировать свой курс. Но его явно недостаточно, чтобы заметно разогнать ракету. Можем ли мы заметно увеличить скорость ракеты, используя гравитационный манёвр?

    В самом общем виде эта задача выглядит так. Мы влетаем в поле тяготения Юпитера с какой-то скоростью. Затем вылетаем из поля. Изменится ли наша скорость? И как сильно она может измениться? Давайте решим эту задачу.

    С точки зрения наблюдателя, который находится на Юпитере (а точнее, неподвижен относительно его центра масс), наш манёвр выглядит так. Сначала ракета находится на большом расстоянии от Юпитера и движется к нему со скоростью V . Затем, приближаясь к Юпитеру, она разгоняется. Траектория ракеты при этом искривляется и, как известно, в самом общем виде представляет собой гиперболу. Максимальная скорость ракеты будет при минимальном сближении. Здесь главное – не врезаться в Юпитер, а пролететь рядом с ним. После минимального сближения ракета начнёт удаляться от Юпитера, а её скорость будет уменьшаться. Наконец, ракета вылетит из поля притяжения Юпитера. Какая у неё будет скорость? Точно такая же, как и была при влёте. Ракета влетела в гравитационное поле Юпитера со скоростью V и вылетела из него с точно такой же скоростью V . Ничего не изменилось? Нет изменилось. Изменилось НАПРАВЛЕНИЕ скорости. Это важно. Благодаря этому мы можем совершить гравитационный манёвр.

    Действительно, для нас ведь важна не скорость ракеты относительно Юпитера, а её скорость относительно Солнца. Это так называемая гелиоцентрическая скорость. С такой скоростью ракета движется по Солнечной системе. Юпитер тоже движется по Солнечной системе. Вектор гелиоцентрической скорости ракеты можно разложить на сумму двух векторов: орбитальная скорость Юпитера (примерно 13 км/сек) и скорость ракеты ОТНОСИТЕЛЬНО Юпитера. Здесь нет ничего сложного! Это обычное правило треугольника для сложения векторов, которое изучают в 7-м классе. И этого правила ДОСТАТОЧНО, чтобы понять суть гравитационного манёвра.

    У нас есть четыре скорости. V 1 – это скорость нашей ракеты относительно Солнца ПЕРЕД гравитационным манёвром. U 1 – это скорость ракеты относительно Юпитера ПЕРЕД гравитационным манёвром. U 2 – это скорость ракеты относительно Юпитера ПОСЛЕ гравитационного манёвра. По величине U 1 и U 2 РАВНЫ, но по направлению они РАЗНЫЕ. V 2 – это скорость ракеты относительно Солнца ПОСЛЕ гравитационного манёвра. Чтобы увидеть, как все эти четыре скорости связаны между собой, посмотрим на рисунок:

    Зелёная стрелка АО – это скорость движения Юпитера по своей орбите. Красная стрелка АВ – это V 1: скорость нашей ракеты относительно Солнца ПЕРЕД гравитационным манёвром. Жёлтая стрелка ОВ – это скорость нашей ракеты относительно Юпитера ПЕРЕД гравитационным манёвром. Жёлтая стрелка ОС – это скорость ракеты относительно Юпитера ПОСЛЕ гравитационного манёвра. Эта скорость ДОЛЖНА лежать где-то на жёлтой окружности радиуса ОВ. Потому что в своей системе координат Юпитер НЕ МОЖЕТ изменить величину скорости ракеты, а может только повернуть её на некоторый угол (альфа). И наконец, АС – это то, что нам нужно: скорость ракеты V 2 ПОСЛЕ гравитационного манёвра.

    Посмотрите, как всё просто. Скорость ракеты ПОСЛЕ гравитационного манёвра АС равна скорости ракеты ДО гравитационного манёвра АВ плюс вектор ВС. А вектор ВС это ИЗМЕНЕНИЕ скорости ракеты в системе отсчёта Юпитера. Потому что ОС – ОВ = ОС + ВО = ВО + ОС = ВС. Чем сильнее повернётся вектор скорости ракеты относительно Юпитера, тем эффективнее будет гравитационный манёвр.

    Итак, ракета БЕЗ горючего влетает в поле притяжения Юпитера (или другой планеты). Величина её скорости ДО и ПОСЛЕ манёвра относительно Юпитера НЕ ИЗМЕНЯЕТСЯ. Но из-за поворота вектора скорости относительно Юпитера, скорость ракеты относительно Юпитера всё-таки изменяется. И вектор этого изменения просто прибавляется к вектору скорости ракеты ДО манёвра. Надеюсь, всё понятно объяснил.