Войти
Логопедический портал
  • Картотека игровых упражнений для обучения детей с нарушением речи правильному употреблению предлогов Д игра где что находится предлоги
  • Как определяют происхождение метеоритных кратеров
  • Какие открытия сделал физик Эрнест Резерфорд?
  • Выпускной в воскресной школе (тоош) Воскресная школы – ступенечка к Богу
  • Герои пьесы "Три сестры" Чехова: характеристика героев Смотреть что такое "сестры прозоровы" в других словарях
  • Классификация органических соединений по функциональным группам
  • Задачи на свободное падение тел: примеры решения задач по кинематике. Неравномерное движение. Средняя скорость. Мгновенная скорость График проекции ускорения от времени

    Задачи на свободное падение тел: примеры решения задач по кинематике. Неравномерное движение. Средняя скорость. Мгновенная скорость График проекции ускорения от времени

    Часть 1

    Вычисление мгновенной скорости
    1. Начните с уравнения. Для вычисления мгновенной скорости необходимо знать уравнение, описывающее перемещение тела (его позицию в определенный момент времени), то есть такое уравнение, на одной стороне которого находится s (перемещение тела), а на другой стороне - члены с переменной t (время). Например:

      s = -1.5t 2 + 10t + 4

      • В этом уравнении: Перемещение = s . Перемещение - пройденный объектом путь. Например, если тело переместилось на 10 м вперед и на 7 м назад, то общее перемещение тела равно 10 - 7 = 3 м (а на 10 + 7 = 17 м). Время = t . Обычно измеряется в секундах.
    2. Вычислите производную уравнения. Чтобы найти мгновенную скорость тела, чьи перемещения описываются приведенным выше уравнением, нужно вычислить производную этого уравнения. Производная - это уравнение, позволяющее вычислить наклон графика в любой точке (в любой момент времени). Чтобы найти производную, продифференцируйте функцию следующим образом: если y = a*x n , то производная = a*n*x n-1 . Это правило применяется к каждому члену многочлена.

      • Другими словами, производная каждого члена с переменной t равна произведению множителя (стоящему перед переменной) и степени переменной, умноженному на переменную в степени, равную исходной степени минус 1. Свободный член (член без переменной, то есть число) исчезает, потому что умножается на 0. В нашем примере:

        s = -1.5t 2 + 10t + 4
        (2)-1.5t (2-1) + (1)10t 1 - 1 + (0)4t 0
        -3t 1 + 10t 0
        -3t + 10

    3. Замените "s" на "ds/dt", чтобы показать, что новое уравнение - это производная от исходного уравнения (то есть производная s от t). Производная - это наклон графика в определенной точке (в определенный момент времени). Например, чтобы найти наклон линии, описываемой функцией s = -1.5t 2 + 10t + 4 при t = 5, просто подставьте 5 в уравнение производной.

      • В нашем примере уравнение производной должно выглядеть следующим образом:

        ds/dt = -3t + 10

    4. В уравнение производной подставьте соответствующее значение t, чтобы найти мгновенную скорость в определенный момент времени. Например, если вы хотите найти мгновенную скорость при t = 5, просто подставьте 5 (вместо t) в уравнение производной ds/dt = -3 + 10. Затем решите уравнение:

      ds/dt = -3t + 10
      ds/dt = -3(5) + 10
      ds/dt = -15 + 10 = -5 м/с

      • Обратите внимание на единицу измерения мгновенной скорости: м/с. Так как нам дано значение перемещения в метрах, а время - в секундах, и скорость равна отношению перемещения ко времени, то единица измерения м/с - правильная.

      Часть 2

      Графическая оценка мгновенной скорости
      1. Постройте график перемещения тела. В предыдущей главе вы вычисляли мгновенную скорость по формуле (уравнению производной, позволяющему найти наклон графика в определенной точке). Построив график перемещения тела, вы можете найти его наклон в любой точке, а следовательно определить мгновенную скорость в определенный момент времени .

        • По оси Y откладывайте перемещение, а по оси X - время. Координаты точек (x,у) получите через подстановку различных значений t в исходное уравнение перемещение и вычисления соответствующих значений s.
        • График может опускаться ниже оси X. Если график перемещения тела опускается ниже оси X, то это значит, что тело движется в обратном направлении от точки начала движения. Как правило, график не распространяется за ось Y (отрицательные значения x) - мы не измеряем скорости объектов, движущихся назад во времени!
      2. Выберите на графике (кривой) точку P и близкую к ней точку Q. Чтобы найти наклон графика в точке P, используем понятие предела. Предел - состояние, при котором величина секущей, проведенной через 2 точки P и Q, лежащих на кривой, стремится к нулю.

        • Например, рассмотрим точки P(1,3) и Q(4,7) и вычислим мгновенную скорость в точке P.
      3. Найдите наклон отрезка PQ. Наклон отрезка PQ равен отношению разницы значений координат «у» точек P и Q к разнице значений координат «х» точек P и Q. Другими словами, H = (y Q - y P)/(x Q - x P) , где H - наклон отрезка PQ. В нашем примере наклон отрезка PQ равен:

        H = (y Q - y P)/(x Q - x P)
        H = (7 - 3)/(4 - 1)
        H = (4)/(3) = 1.33

      4. Повторите процесс несколько раз, приближая точку Q к точке P. Чем меньше расстояние между двумя точками, тем ближе значение наклона полученных отрезков к наклону графика в точке P. В нашем примере проделаем вычисления для точки Q с координатами (2,4.8), (1.5,3.95) и (1.25,3.49) (координаты точки P остаются прежними):

        Q = (2,4.8): H = (4.8 - 3)/(2 - 1)
        H = (1.8)/(1) = 1.8

        Q = (1.5,3.95): H = (3.95 - 3)/(1.5 - 1)
        H = (.95)/(.5) = 1.9

        Q = (1.25,3.49): H = (3.49 - 3)/(1.25 - 1)
        H = (.49)/(.25) = 1.96

      5. Чем меньше расстояние между точками P и Q, тем ближе значение H к наклону графика в точке P При предельно малом расстоянии между точками P и Q, значение H будет равно наклону графика в точке P Так как мы не можем измерить или вычислить предельно малое расстояние между двумя точками, графический способ дает оценочное значение наклона графика в точке Р.

        • В нашем примере при приближении Q к P мы получили следующие значения H: 1.8; 1.9 и 1.96. Так как эти числа стремятся к 2, то можно сказать, что наклон графика в точке P равен 2 .
        • Помните, что наклон графика в данной точке равен производной функции (по которой построен этот график) в этой точке. График отображает перемещение тела с течением времени и, как отмечалось в предыдущем разделе, мгновенная скорость тела равна производной от уравнения перемещения этого тела. Таким образом, можно заявить, что при t = 2 мгновенная скорость равна 2 м/с (это оценочное значение).

      Часть 3

      Примеры
      1. Вычислите мгновенную скорость при t = 4, если перемещение тела описывается уравнением s = 5t 3 - 3t 2 + 2t + 9. Этот пример похож на задачу из первого раздела с той лишь разницей, что здесь дано уравнение третьего порядка (а не второго).

        • Сначала вычислим производную этого уравнения:

          s = 5t 3 - 3t 2 + 2t + 9
          s = (3)5t (3 - 1) - (2)3t (2 - 1) + (1)2t (1 - 1) + (0)9t 0 - 1
          15t (2) - 6t (1) + 2t (0)
          15t (2) - 6t + 2

        • Теперь подставим в уравнение производной значение t = 4:

          s = 15t (2) - 6t + 2
          15(4) (2) - 6(4) + 2
          15(16) - 6(4) + 2
          240 - 24 + 2 = 22 м/с

      2. Оценим значение мгновенной скорости в точке с координатами (1,3) на графике функции s = 4t 2 - t. В этом случае точка P имеет координаты (1,3) и необходимо найти несколько координат точки Q, лежащий близко к точке P. Затем вычислим H и найдем оценочные значения мгновенной скорости.

        • Сначала найдем координаты Q при t = 2, 1.5, 1.1 и 1.01.

          s = 4t 2 - t

          t = 2: s = 4(2) 2 - (2)
          4(4) - 2 = 16 - 2 = 14, so Q = (2,14)

          t = 1.5: s = 4(1.5) 2 - (1.5)
          4(2.25) - 1.5 = 9 - 1.5 = 7.5, so Q = (1.5,7.5)

          t = 1.1: s = 4(1.1) 2 - (1.1)
          4(1.21) - 1.1 = 4.84 - 1.1 = 3.74, so Q = (1.1,3.74)

          t = 1.01: s = 4(1.01) 2 - (1.01)
          4(1.0201) - 1.01 = 4.0804 - 1.01 = 3.0704, so Q = (1.01,3.0704)

    Вторник, а это значит, что сегодня мы снова решаем задачи. На это раз, на тему «свободное падение тел».

    Вопросы с ответами на свободное падение тел

    Вопрос 1. Как направлен вектор ускорения свободного падения?

    Ответ: можно просто сказать, что ускорение g направлено вниз. На самом деле, если говорить точнее, ускорение свободного падения направлено к центру Земли.

    Вопрос 2. От чего зависит ускорение свободного падения?

    Ответ: на Земле ускорение свободного падения зависит от географической широты, а также от высоты h подъема тела над поверхностью. На других планетах эта величина зависит от массы M и радиус R небесного тела. Общая формула для ускорения свободного падения:


    Вопрос 3. Тело бросают вертикально вверх. Как можно охарактеризовать это движение?

    Ответ: В этом случае тело движется равноускоренно. Причем время подъема и время падения тела с максимальной высоты равны.

    Вопрос 4. А если тело бросают не вверх, а горизонтально или под углом к горизонту. Какое это движение?

    Ответ: можно сказать, что это тоже свободное падение. В данном случае движение нужно рассматривать относительно двух осей: вертикальной и горизонтальной. Относительно горизонтальной оси тело движется равномерно, а относительно вертикальной – равноускоренно с ускорением g .

    Баллистика – наука, изучающая особенности и законы движения тел, брошенных под углом к горизонту.

    Вопрос 5. Что значит «свободное» падение.

    Ответ: в данном контексте понимается, что тело при падении свободно от сопротивления воздуха.

    Свободное падение тел: определения, примеры

    Свободное падение – равноускоренное движение, происходящее под действием силы тяжести.

    Первые попытки систематизированно и количественно описать свободное падение тел относятся к средневековью. Правда, тогда было широко распространено заблуждение, что тела разной массы падают с разной скоростью. На самом деле, в этом есть доля правды, ведь в реальном мире на скорость падения сильно влияет сопротивление воздуха.

    Однако, если им можно пренебречь, то скорость падающих тел разной массы будет одинакова. Кстати, скорость при свободном падении возрастает пропорционально времени падения.

    Ускорение свободно падающих тел не зависит от их массы.

    Рекорд свободного падения для человека на данный момент принадлежит австрийскому парашютисту Феликсу Баумгартнеру, который в 2012 году прыгнул с высоты 39 километров и находился в свободном падении 36 402,6 метра.

    Примеры свободного падения тел:

    • яблоко летит на голову Ньютона;
    • парашютист выпрыгивает из самолета;
    • перышко падает в герметичной трубке, из которой откачан воздух.

    При свободном падении тела возникает состояние невесомости. Например, в таком же состоянии находятся предметы на космической станции, движущейся по орбите вокруг Земли. Можно сказать, что станция медленно, очень медленно падает на планету.

    Конечно, свободное падение возможно не только не Земле, но и вблизи любого тела, обладающего достаточной массой. На других комических телах падения также будет равноускоренным, но величина ускорения свободного падения будет отличаться от земной. Кстати, раньше у нас уже выходил материал про гравитацию .

    При решении задач ускорение g принято считать равным 9,81 м/с^2. В реальности его величина варьируется от 9,832 (на полюсах) до 9,78 (на экваторе). Такая разница обусловлена вращением Земли вокруг своей оси.

    Нужна помощь в решении задач по физике? Обращайтесь в

    Мгновенная скорость – это скорость тела в данный момент времени или в данной точке траектории. Это векторная физическая величина, численно равная пределу, к которому стремится средняя скорость за бесконечно малый промежуток времени:

    Другими словами, мгновенная скорость – это первая производная радиус-вектора по времени.

    2. Средняя скорость.

    Средней скоростью на некотором участке называется величина равная отношению перемещения к промежутку времени, за который это перемещение произошло.

    3. Угловая скорость. Формула. СИ.

    Угловой скоростью называется векторная физическая величина равная первой производной угла поворота тела по времени. [рад/с]

    4. Связь угловой скорости с периодом вращения.

    Равномерное вращение характеризуется периодом вращения и частотой вращения.

    5. Угловое ускорение. Формула. СИ.

    Это физическая величина равная первой производной угловой скорости или второй производной угла поворота тела по времени. [рад/с 2 ]

    6. Как направлен вектор угловой скорости/углового ускорения.

    Вектор угловой скорости направлен по оси вращения причем так чтобы вращение рассматриваемое с конца вектора угловой скорости, происходило против хода часовой стрелки(правило правой руки).

    При ускоренном вращении вектор углового ускорения сонаправлен с вектором угловой скорости, а при замедленном − противоположен ему.

    7/8. Связь между нормальным ускорением и угловой скоростью/Связь между тангенциальным и угловым ускорением.

    9. Что определяет и как направлена нормальная составляющая полного ускорения? Нормальное ускорение СИ. Нормальное ускорение определяет быстроту изменения скоро-сти по направлению и направлено к центру кривизны траектории.

    В СИ нормальное ускорение [м/с 2 ]

    10. Что определяет и как направлена тангенциальная составляющая полного ускорения.

    Тангенциальное ускорение равно первой производной по времени от модуля скорости и определяет быстроту изменения скорости по модулю, и направлено по касательной к траектории.

    11. Тангенциальное ускорение в СИ.

    12. Полное ускорение тела. Модуль этого ускорения.

    13.Масса. Сила. Законы Ньютона.

    Масса − это физическая величина, являющаяся мерой инерционных и гравитационных свойств тела. Единицей массы в СИ [m ] = кг.

    Сила − это векторная физическая величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате, которого тело деформируется или приобретает ускорение. Единица измерения силы в СИ – Ньютон; кг*м/с 2

    Первый закон Ньютона (или закон инерции ): если на тело не действуют силы или их действие скомпенсировано, то данное тело находится в состоянии покоя или равномерного прямолинейного движения.

    Второй закон Ньютона : ускорение тела прямо пропорционально результирующей сил приложенных к нему и обратно пропорционально его массе. Второй закон Ньютона позволяет решать основную задачу механики. Поэтому его называется основным уравнением динамики поступательного движения .

    Третий закон Ньютона : сила, с которой одно тело действует на другое, равна по величине и противоположна по направлению силе, с которой второе тело действует на первое.