Войти
Логопедический портал
  • Любить свою Родину - значит знать её!
  • Деникин Антон - биография, факты из жизни, фотографии, справочная информация
  • Поступить в мгимо вполне реально
  • История корабля Бизань мачта парусника сан джованни баттиста
  • Буква М, м. Согласный звук и. Буква М, м Шпаргалка по уподоблению согласных звуков по месту образования
  • Самые известные бытовые сказки
  • Почему с космич корабля земля кажется голубой. К Земле движется космический корабль пришельцев? Что скрывается за таинственным межзвездным объектом. Почему космос чёрный

    Почему с космич корабля земля кажется голубой. К Земле движется космический корабль пришельцев? Что скрывается за таинственным межзвездным объектом. Почему космос чёрный

    Марс красный. Луна пепельно-серая. Сатурн желтый. Солнце ослепительно белое. Но наша планета, даже если смотреть на нее из глубин космоса, даже если мы немного приподнимаемся над атмосферой, на низкой околоземной орбите, или если улетаем к внешним краям Солнечной системы - наша планета голубая. Почему? Что делает ее голубой? Очевидно, не вся планета голубая. Облака белые, отражают белый, прямой солнечный свет на смотрящего сверху. Лед - например, на полярных полюсах - белый по той же причине. Континенты коричневые или зеленые, если смотреть издалека, в зависимости от времени года, рельефа и растительности.

    Из этого можно сделать важный вывод: Земля голубая не потому, что небо голубое. Если бы это было так, весь свет, отраженный от поверхности, был бы голубым, но мы этого не наблюдаем. Но есть намек, который оставляют истинно синие части планеты: моря и океаны Земли. Оттенок синего, которым обладает вода, зависит от ее глубины. Если присмотреться к снимку ниже, видно, что водные регионы, обрамляющие континенты (вдоль континентального шельфа), имеют более светлый оттенок синего, чем глубокие, темные места океана.

    Возможно, вы слышали, что океан синий, потому что небо голубое, а вода отражает небо. Небо голубое, это точно. И небо голубое, поскольку наша атмосфера эффективнее рассеивает голубой (с короткой длиной волны), чем красный свет (с более длинной волной). Отсюда:

    • Небо кажется голубым в течение дня, поскольку коротковолновый свет, попадающий в атмосферу, рассеивается во всех направлениях, и больше «синего» попадает в наши глаза, по сравнению с остальными.
    • Солнце и Луна выглядят красными на восходе и закате, поскольку голубой свет, проходя через толстые слои атмосферы, рассеивается, а остается преимущественно насыщенный красный свет, который и попадает нам в глаза.
    • Луна оказывается красной во время полного лунного затмения: красный свет, проходя через нашу атмосферу, будет падать на поверхность Луны, тогда как голубой свет с легкостью рассеивается.

    Но если бы объяснение было таким - что океан отражает небо - мы бы не видели этих оттенков синего, когда смотрели бы на более глубокую воду. По факту, если бы вы сделали снимок под водой при естественном освещении, без дополнительных источников света, вы бы увидели - даже на самой скромной глубине, - что все имеет синеватый оттенок.

    Видите ли, океан состоит из молекул воды, а вода - как и все молекулы - избирательно поглощает свет определенных длин волн. Проще всего воде поглотить инфракрасный, ультрафиолетовый и красный свет. Это значит, что если вы окунете голову в воду даже на скромной глубине, вы будете защищены от Солнца, от ультрафиолетового излучения и все будет казаться голубым: красный свет будет исключен.

    Нырните глубже - пропадет и оранжевый.

    Еще ниже - желтый, зеленый, фиолетовый.

    Погрузившись на много километров, мы обнаружим, что исчез и голубой, хотя он исчезнет последним.

    Именно поэтому глубины океана темно-синие: все другие длины волн поглощаются, а у самого синего самая высокая вероятность отразиться и заново отправиться во Вселенную. По той же причине, если бы Земля была полностью покрыта океаном, отражалось бы всего 11% видимого солнечного света: океан прекрасно поглощает солнечный свет.

    Поскольку 70% поверхности мира покрыто океаном, и по большей части океаном глубоким, наш мир кажется голубым издалека.

    Уран и Нептун, два других голубых мира Солнечной системы, обладают атмосферами, состоящими преимущественно из водорода, гелия и метана. (Нептун богаче льдами и обладает более широким разнообразием компонентов, следовательно, имеет другой оттенок). В достаточно больших концентрациях, метан чуть лучше поглощает красный свет и чуть лучше отражает голубой, чем другие длины волн, тогда как водород и гелий практически прозрачны для всех частот видимого света. В случае голубых газовых гигантов, действительно имеет значение цвет неба.

    Но на Земле? Наша атмосфера достаточно тонкая, чтобы никак не влиять на окраску планеты. Небо и океан голубые вовсе не из-за отражений; они голубые, синие, но каждый по своей воле. Если убрать океаны, человек на поверхности все равно будет видеть голубое небо, и если убрать наше небо (и при этом оставить непостижимым образом жидкую воду на поверхности), наша планета тоже останется голубой.

    Метки: , , .

    2.50: "Спуск СА с высот от 90-до 40 км обнаруживается и сопровождается радиолокационными станциями" .

    Запомните эти данные по радиолокации.

    Мы вернёмся к ним, когда будем обсуждать, чем и как мог следить за "Аполлонами" СССР 50 лет назад и почему он этого так и не сделал.

    Живое видео

    Включите титры на русском языке.

    Пилотируемая посадка космического аппарата

    Введение

    Сразу стоит оговориться, что организация пилотируемого полета довольно сильно отличается от беспилотных миссий, но в любом случае все работы по проведению динамических операций в космосе можно разделить на два этапа: проектный и оперативный, только в случае пилотируемых миссий эти этапы, как правило, занимают значительно больше времени. В этой статье рассматривается в основном оперативную часть, так как работы по баллистическому проектированию спуска ведутся непрерывно и включают в себя различные исследования по оптимизации всевозможных факторов, влияющих на безопасность и комфорт экипажа при посадке.

    За 40 суток

    Проводятся первые прикидочные расчеты спуска с целью определения районов посадки. Зачем это делается? В настоящее время штатный управляемый спуск российских кораблей может производиться только в 13 фиксированных районов посадки, расположенных в Республике Казахстан. Этот факт накладывает массу ограничений, связанных в первую очередь с необходимостью предварительного согласования с нашими иностранными партнерами всех динамических операций. Основные сложности возникают при посадке осенью и весной – это связано с сельскохозяйственными работами в районах посадки. Этот факт необходимо учитывать, ведь кроме обеспечения безопасности экипажа, необходимо также обеспечивать безопасность местного населения и поисково-спасательной службы (ПСС). Помимо штатных районов посадки, существуют еще области посадки при срыве на баллистический спуск, которые также должны быть пригодны для приземления.

    За 10 суток

    Уточняются предварительные расчеты по траекториям спуска с учетом последних данных о текущей орбите МКС и характеристиках пристыкованного корабля. Дело в том, что с момента старта до спуска проходит достаточно большой промежуток времени, и массо-центровочные характеристики аппарата меняются, кроме того, большой вклад вносит тот факт, что вместе с космонавтами на Землю возвращаются полезные грузы со станции, которые могут существенно изменить положение центра масс спускаемого аппарата. Тут необходимо пояснить, почему это важно: форма космического корабля «Союз» - напоминает фару, т.е. никаких аэродинамических органов управления у него нет, но для получения необходимой точности посадки необходимо осуществлять управление траекторией в атмосфере. Для этого в «Союзе» предусмотрена газодинамическая система управления, но она не способна компенсировать все отклонения от номинальной траектории, поэтому в конструкцию аппарата искусственно добавляется лишний балансировочный груз, цель которого сместить центр давления из центра масс, что позволит управлять траекторией спуска, переворачиваясь по крену. Уточненные данные по основной и резервной схемам отправляются в ПСС. По этим данным производится облет всех расчетных точек и выносится заключение о возможности приземления в эти районы.

    За 1 сутки

    Окончательно уточняется траектория спуска с учетом последних измерений положения МКС, а также прогноза ветровой обстановки в основном и резервных районах посадки. Это необходимо делать из-за того что на высоте порядка 10км раскрывается парашютная система. К этому моменту времени система управления спуском уже сделала свою работу и никак скорректировать траекторию не может. По-сути, на аппарат действует только ветровой снос, который нельзя не учитывать. На рисунке ниже показан один из вариантов моделирования ветрового сноса. Как видно после ввода парашюта траектория сильно меняется. Ветровой снос иногда может составлять до 80% от допустимого радиуса круга рассеивания, поэтому точность метеопрогноза очень важна.

    В сутки спуска:
    В обеспечении спуска космического аппарата на землю кроме баллистической и поисково-спасательной службы участвует еще много подразделений таких как:

    • служба управления транспортными кораблями;
    • служба управления МКС;
    • служба, отвечающая за здоровье экипажа;
    • телеметрическая и командная службы и др.

    Только после доклада о готовности всех служб, руководителями полета может быть принято решение о проведении спуска по намеченной программе.
    После этого происходит закрытие переходного люка и расстыковка корабля от станции. За проведение расстыковки отвечает отдельная служба. Тут необходимо заранее рассчитать направление расстыковки, а также импульс, который необходимо приложить к аппарату, чтобы не допустить столкновение со станцией.

    При расчете траектории спуска схема расстыковки также учитывается. После расстыковки корабля еще есть некоторое время до включения тормозного двигателя. В это время происходит проверка всего оборудования, проводятся траекторные измерения, и уточняется точка посадки. Это последний момент, когда еще что-то можно уточнить. Затем включается тормозной двигатель. Это один из самых важных этапов спуска, поэтому он контролируется постоянно. Такие меры необходимы для того, чтобы в случае нештатной ситуации понять по какому сценарию идти дальше. При штатной отработке импульса через некоторое время происходит разделение отсеков корабля (спускаемый аппарат отделяется от бытового и приборно-агрегатного отсеков, которые затем сгорают в атмосфере).

    Если при входе в атмосферу система управления спуском решает, что она не в состоянии обеспечить приземление спускаемого аппарата в точке с требуемыми координатами, то корабль «срывается» в баллистический спуск. Так как это все происходит уже в плазме (нет радиосвязи), то установить по какой траектории движется аппарат можно только после возобновления радиосвязи. Если произошел срыв на баллистический спуск, необходимо быстро уточнить предполагаемую точку посадки и передать ее поисково-спасательной службе. В случае же штатного управляемого спуска корабль еще в полете начинают «вести» специалисты ПСС и мы можем увидеть в прямом эфире спуск аппарата на парашюте и даже, если повезет, работу двигателей мягкой посадки (как на рисунке).

    После этого уже можно всех поздравлять, кричать ура, открывать шампанское, обниматься и т.д. Официально баллистическая работа завершается только после получения GPS координат точки посадки. Это нужно для послеполетной оценки промаха, по которому можно оценить качество нашей работы.
    Фотографии взяты с сайта: www.mcc.rsa.ru

    Точность посадки космического корабля

    Сверхточные посадки или "утраченные технологии" НАСА

    Оригинал взят у в

    В дополнение к

    Оригинал взят у в

    В который уже раз повторяю, что прежде чем вольно рассуждать о глубочайшей древности, где 100500 воинов невозбранно совершали лихие марш-броски по произвольно взятой местности, полезно потренироваться "на кошках" ©"Операция Ы", например на событиях всего лишь полувековой давности - "полетах американцев на Луну".

    Защитнички НАСА что-то густо пошли. И месяца не прошло с , как весьма раскрученный блогер Зеленыйкот, оказавшийся на деле рыжим, выступил на тему :


    "Пригласили на GeekPicnic рассказать о космических мифах. Разумеется я взял самый ходовой и популярный: миф о лунном заговоре. За час подробно разобрали наиболее часто встречающиеся заблуждения и самые распространенные вопросы: почему не видно звезд, почему развевается флаг, где скрывается лунный грунт, как смогли потерять пленки с записью первой высадки, почему не делают ракетные двигатели F1 и другие вопросы. "

    Написал ему свой комментарий :

    "Мелко, Хоботов!В топку опровержения "флаг дрыгается - нет звезд - фотки подделаны"!
    Лучше объясните только одно: как американцы "при возвращении с Луны" со второй космической скорости совершали посадку с точностью +-5 км, недостижимой до сих пор даже с первой космической скорости, с околоземной орбиты?
    Опять "утраченные технологии НАСА"? Б-г-г "Ответа пока не получил, да и сомневаюсь что будет что-то вменяемое, это же не хиханьки-хаханьки о флаге и космической форточке.

    Поясняю в чем засада. А.И. Попов в статье " " пишет: "По данным НАСА , «лунные» «Аполлоны» №№ 8,10-17 приводнились с отклонениями от расчётных точек в 2,5; 2,4; 3; 3,6; 1,8; 1; 1,8; 5,4; и 1,8 км соответственно; в среднем ± 2 км. То есть круг попадания для «Аполлонов» был якобы исключительно мал – 4 км в диаметре.

    Наши проверенные «Союзы» даже сейчас, 40 лет спустя совершают посадку раз в десять менее точно илл.1), хотя траектории спуска «Аполлонов» и «Союзов» по своей физической сути одинаковы.":

    подробнее см. в :

    "...современная точность приземления "Союза" обеспечивается за счёт предусмотренного в 1999 году при проектировании усовершенствованного «Союза - ТМС» снижения высоты ввода в действие парашютных систем для повышения точности приземления (15–20 км по радиусу круга суммарного разброса точек посадки).

    С конца 1960-х и до 21 века точность посадки "Союзов" при нормальном, штатном спуске была в пределах ± 50-60 км от расчетной точки как это и предусматривалось в 1960-х.

    Естественно, бывали и нештатные ситуации, например в 1969 году приземление " " с Борисом Волыновым на борту произошло с недолетом до расчетной точки на 600 км.

    До "Союзов", в эпоху "Востоков" и "Восходов" отклонения от расчетной точки бывали и покруче.

    Апрель 1961 г Ю. Гагарин совершает 1 виток вокруг Земли. Из-за сбоя в системе торможения Гагарин приземлился не в запланированной области в районе космодрома Байконур, а на 1800 км западнее, в Саратовской области.

    Март 1965 г. П.Беляев, А. Леонов 1 день 2 часа 2 мин первый мире выход человека в открытый космос автоматика отказала, Посадка произошла в заснеженной тайге в 200 км от Перми, далеко от населённых пунктов. Космонавты пробыли двое суток в тайге, пока их не обнаружили спасатели («На третьи сутки нас оттуда вытащили.»). Это произошло из-за того, что вертолёт не мог приземлиться поблизости. Место посадки для вертолёта было оборудовано на следующий день в 9 км от места, где приземлились космонавты. Ночёвка осуществлялась в построенном на месте посадки бревенчатом доме. Космонавты и спасатели добирались до вертолёта на лыжах"

    Прямой спуск как у "Союзов" был бы из-за перегрузок несовместим с жизнью космонавтов "Аполлона" ведь они должны были бы погасить вторую космическую скорость, а более безопасный спуск по двухнырковой схеме дает разброс по точке посадки в сотни и даже тысячи километров:

    То есть, если бы "Аполлоны" приводнялись с нереальной даже по сегодняшним меркам точностью по прямой однонырковой схеме, то космонавты должны были либо сгореть из-за отсутствия качественной абляционной защиты, либо умереть/получить тяжелые травмы от перегрузок.

    Но многочисленная теле- кино- и фотосъемка неизменно фиксировала что будто бы спустившиеся со второй космической скорости астронавты в "Аполлонах" не просто живы, а очень даже веселенькие живчики.

    И это при всем при том, что американцы в то же самое время не могли нормально запустить даже обезьянку даже на низкую околоземную орбиту см. .

    Рыжий Зеленыйкот Виталий Егоров, столь рьяно защищающий миф "американцы на Луне" - платный пропагандист, специалист по связям с общественностью частной космической компании “Даурия Аэроспейс”, которая окопалась в Технопарке «Сколково» в Москве и фактически существует на американские деньги (выделено мною):

    "Компания основана в 2011 году. Лицензия Роскосмоса на осуществление космической деятельности получена в 2012 году. До 2014 года имела подразделения в Германии и США. В начале 2015 года производственная деятельность была практически свернута везде кроме России. Компания занимается созданием небольших космических аппаратов (спутников) и продажей комплектующих для них. Также Dauria Aerospace привлекла инвестиции 20 миллионов долларов от венчурного фонда I2bf в 2013 году . Два своих спутника компания продала американской в конце 2015 года, тем самым получив первый доход от своей деятельности ."

    "В одной из своих очередных «лекций» Егоров высокомерно бравировал, улыбаясь своей дежурной обворожительной улыбкой, тем, что американский фонд «I2BF Holdings Ltd. Цель I2BF-RNC Strategic Resources Fund» под патронажем НАСА вложил в компанию «ДАУРИЯ АЭРОСПЕЙС» 35 миллионов долларов.

    Выходит, что господин Егоров не просто субъект Российской Федерации, а полноценный иностранный резидент, деятельность которого финансируется из американских фондов, с чем я и поздравляю всех добровольных российских спонсоров краудфандинга «БУМСТАРТЕР», вложивших свои кровные денежки в проект иностранной компании, который носит вполне определенный идеологический характер. "

    Каталог всех статей журнала:

    Земля как управляемый космический корабль

    Д. Фроман

    Речь на банкете, состоявшемся после конференции по физике плазмы, организованной Американским физическим, обществом в ноябре 1961 года в Колорадо-Спрингс.

    Поскольку я не очень хорошо разбираюсь в физике плазмы и термоядерном синтезе, я буду говорить не о самих этих явлениях, а об одном их практическом применении в ближайшем будущем.

    Представим себе, что нам удалось изобрести космический корабль, который движется за счет того, что выбрасывает продукты реакций D D и D Т . На таком корабле можно стартовать в космос, поймать там несколько астероидов и отбуксировать их на Землю. (Идея, правда, не нова.) Если не очень перегружать ракету, то можно было бы доставить на Землю 1000 тонн астероидов, затратив всего около тонны дейтерия. Я, честно говоря, не знаю, из какого вещества состоят астероиды. Однако вполне может оказаться, что наполовину они состоят из никеля. Известно, что 1 фунт никеля стоит 50 центов, а 1 фунт дейтерия – около 100 долларов. Таким образом, на 1 миллион долларов мы могли бы купить 5 тонн дейтерия и, израсходовав их, доставить на Землю 2500 тонн никеля стоимостью в 2,5 миллиона долларов. Неплохо, правда? Я уже было подумывал, а не организовать ли мне Американскую Компанию по Добыче и Доставке Астероидов (АКДДА)? Оборудование такой компании будет исключительно простым. При достаточной субсидии со стороны дяди Сэма можно было бы основать весьма доходное дело. Если кто-либо из присутствующих с крупным счетом в банке пожелает войти в число учредителей, пусть подойдет ко мне после банкета.

    А теперь давайте заглянем в более отдаленное будущее. Лично я вообще не могу понять, почему астронавты мечтают попасть в межзвездное пространство. В ракете ведь будет страшная теснота. Да и в питании им придется себя сильно урезать. Но это еще полбеды. Главная неприятность – что астронавт в ракете будет находиться в том же положении, что и человек, помещенный против пучка быстрых протонов из мощного ускорителя (посмотрите рисунок). Очень мне жаль бедного астронавта; о его печальной участи я даже сочинил балладу:

    Баллада об астронавте*

    (вольный перевод с английского В. Турчина)

    От бета-инвертора

    И гамма-конвертора

    Осталась обшивка одна.

    А ионная пушка,

    Как пустая хлопушка,

    Торчит, ни на что не годна.

    Все распались мезоны,

    Все распались нейтроны,

    Излучился весь видимый свет.

    По закону Кулона

    Разбежались протоны,

    На лептоны ж надежды нет.

    Поврежденный реактор

    Тарахтит, словно трактор,

    В биокамере – гниль и прель.

    Вот сопло уж забилось,

    Да и дно прохудилось,

    И вакуум хлещет в щель...

    Он летел к Ориону,

    Но поток гравитонов

    Пересек неожиданно путь.

    Отклонившись от курса

    И спустив все ресурсы,

    Он сумел и от них ускользнуть.

    Сделав крюк здоровенный,

    Облетел пол-Вселенной

    И теперь на пустом корабле

    По последней прямой

    Возвращался домой,

    Приближаясь к планете Земле.

    Но борясь с тяготеньем

    Сверх-сверх-сверхускореньем,

    Он замедлил стрелки часов.

    И стрелки застыли,

    На Земле ж проходили

    Тысячи тысяч веков.

    Вот родные планеты...

    Боже! Солнце ли это? –

    Темно-красный, чуть теплый шар...

    Над Землею дымится,

    Над Землею клубится

    Водородный, холодный пар.

    Что же это такое?

    Где же племя людское? –

    В неизвестных, далеких мирах.

    Вырастают их дети

    Уж на новой планете,

    А Земля вся в космических льдах.

    Чертыхаясь и плача

    От такой неудачи,

    Астронавт повернул рычаг.

    И раздалось Б,

    И раздалось А,

    И раздалось Х –

    Но мне жаль и тех, кто останется на Земле. Ведь наше Солнце не вечно. Оно когда-нибудь потухнет, погрузив все окружающее в космический мрак и холод. Как мне рассказывал Фред (Фред Хойл то есть) (3), через пару миллиардов лет на Земле будет так холодно, что не то что о комфорте, о самой жизни на этой планете не может быть и речи. А следовательно, имеет явный смысл куда-нибудь податься. Мне кажется, что для большинства из нас самым удобным космическим кораблем все же была бы сама Земля. Поэтому если нам не нравится, что наше светило постепенно гаснет и вообще если все в Солнечной системе нам надоело, зачем здесь оставаться? Давайте полетим куда-нибудь прямо на нашей Земле. При этом все трудности, связанные с космическим полетом, отпадут сами собой. Ведь проблемы защиты от радиации не существует, на Земле есть атмосфера, да и скорость движения будет невелика. Безопасность и приятность такого путешествия очевидны.

    Однако хватит ли нам энергии? Прежде всего понадобятся тепло и свет: ведь в течение долгого времени мы будем удалены от Солнца или какой-либо другой звезды. Дейтерий, содержащийся в океанской воде, может дать нам 1038 эрг, следовательно, если использовать его только для отопления и освещения, то этого хватит на три миллиона лет – срок вполне достаточный. Правда, здесь имеется небольшая загвоздка. При нашей скорости мы будем потреблять 3·1010 фунтов дейтерия в год, а стоимость его 100 долларов за фунт, следовательно, потребляемый дейтерий в 100 раз превысит годовой бюджет современных воздушных сил. Но, быть может, удастся получить дейтерий по оптовым ценам?

    Однако нам понадобится еще энергия для того, чтобы оторваться от Солнца. Расчет показывает, что на это пойдет 2,4·1040 эрг, то есть гораздо больше, чем может дать весь океанский дейтерий. Поэтому необходимо будет изыскать другие источники энергии. Я полагаю, что для решения этой проблемы нам придется обратиться к синтезу альфа-частицы из четырех протонов. При использовании этой реакции все протоны мирового океана дадут нам энергию 1042 эрг, то есть в сорок раз больше того, что нужно, чтобы оторваться от Солнца.

    В качестве рабочего тела можно использовать песок. Выбрасывая 1000 молекул SiO2 на каждую синтезированную альфа-частицу, мы для отрыва от Солнца должны будем истратить всего 4% массы Земли. Мне кажется, что мы можем себе это позволить. Тем более для такой цели не жалко будет израсходовать Луну: ведь вдали от Солнца от нее все равно нет никакого проку. Покинув Солнечную систему и скитаясь в космическом пространстве, мы, вероятно, сможем время от времени еще пополнять наши запасы массы и энергии, заправляясь на лету за счет встречающихся по дороге планет. На пути осуществления этих планов пока стоит одно принципиальное препятствие: мы не умеем осуществлять цепную реакцию 4p - He4. Теперь вы видите, какая это важная проблема. Нам нужно удвоить свои усилия для ее решения. Время не терпит: Земля провела у Солнца уже две трети отпущенного ей срока.

    Уверяю вас: в космосе нам будет отлично. Возможно, нам так понравится, что мы даже не захотим прилепиться к новой звезде.

    Напечатано в журнале «Physics Today», 15, №7 (1962).

    Д. Фроман – до 1962 г. занимал должность технического директора Лосаламосской лаборатории.

    Из книги Дао физики автора Капра Фритьоф

    Из книги Физики продолжают шутить автора Конобеев Юрий

    Земля как управляемый космический корабль Д. Фроман Речь на банкете, состоявшемся после конференции по физике плазмы, организованной Американским физическим, обществом в ноябре 1961 года в Колорадо-Спрингс. Поскольку я не очень хорошо разбираюсь в физике плазмы и

    Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

    Из книги Тайны пространства и времени автора Комаров Виктор

    Из книги На чём Земля держится автора Огородников Кирилл Федорович

    1. Земля - прочная опора Вопрос о том, на чём держится Земля, человек задавал себе с самых древнейших времён. Этот вопрос возникает совершенно естественно, так как в нашей жизни мы всюду привыкли видеть, что каждый предмет должен обязательно иметь какую-нибудь поддержку,

    Из книги Нейтрино - призрачная частица атома автора Азимов Айзек

    2. «Земля на трёх китах» В наше время знают, что Земля вращается вокруг Солнца и вокруг своей оси, но раньше люди считали, что она неподвижна. Следовательно, думали они, у Земли также должна иметься какая-нибудь опора.Однако никаких сведений об этой опоре у людей не было, и

    Из книги Беседы автора Дмитриев Алексей Николаевич

    6. На чём же держится Земля? Теперь мы подошли к концу наших рассуждений и можем ответить вполне ясно и точно на поставленный нами с самого начала вопрос: на чём же, всё-таки, держится наша Земля?Пример с движением Луны нам показал, что Луна ни на чём не держится. Если вы

    Из книги Пять нерешенных проблем науки автора Уиггинс Артур

    Антинейтрино и Земля Как только было доказано существование нейтрино, перед учеными встал вопрос о роли нейтрино во Вселенной. Другими словами, возникло новое направление в науке - нейтринная астрономия.Мощным естественным источником нейтрино во Вселенной являются

    Из книги Вселенная. Руководство по эксплуатации [Как выжить среди черных дыр, временных парадоксов и квантовой неопределенности] автора Голдберг Дэйв

    Из книги Движение. Теплота автора Китайгородский Александр Исаакович

    11. Земля: история недр В ходе формирования Земли тяготение сортировало первичный материал в соответствии с его плотностью: более плотные составляющие опускались к центру, а менее плотные плавали сверху, образовав в итоге кору. На рис. I.8 представлена Земля в разрезе.Кора

    Из книги Твиты о вселенной автора Чаун Маркус

    I. Почему нельзя определить, с какой скоростью плывет корабль в тумане? Ни в одном эксперименте не была получена частица, которая двигалась бы со скоростью больше скорости света.Позвольте представить вам Рыжего по прозвищу Error! Bookmark not defined, бродячего физика, отвергнутого

    Из книги Вселенная! Курс выживания [Среди черных дыр. временных парадоксов, квантовой неопределенности] автора Голдберг Дэйв

    На чем Земля держится? В далекие времена на этот вопрос давали простой ответ: на трех китах. Правда, оставалось неясным, на чем держатся киты. Однако наших наивных прародителей это не смущало.Правильные представления о характере движения Земли, о форме Земли, о многих

    Из книги Интерстеллар: наука за кадром автора Торн Кип Стивен

    Земля 13. Откуда мы знаем, что Земля круглая? Это неочевидно. Не считая складок, таких как горы, Земля кажется плоской. Но это потому, что она слишком большая, и ее кривизна незаметна.Имеются многочисленные доказательства кривизны. В море корабли исчезают за горизонтом,

    Из книги автора

    128. Когда Космический телескоп Хаббл будет заменен? Космический телескоп Хаббл, который находится на низкой околоземной орбите, назван в честь американского космолога Эдвина Хаббла. Он был запущен в апреле 1990.Почему космос? 1. Небо черное, 24 часа 7 дней в неделю. 2. Нет

    Из книги автора

    I. Почему нельзя определить, с какой скоростью плывет корабль в тумане? Ни в одном эксперименте не была получена частица, которая двигалась бы со скоростью больше скорости света.Позвольте представить вам Рыжего по прозвищу Ржавый, бродячего физика, отвергнутого

    Из книги автора

    Марс красный. Луна пепельно-серая. Сатурн желтый. Солнце ослепительно белое. Но наша планета, даже если смотреть на нее из глубин космоса, даже если мы немного приподнимаемся над атмосферой, на низкой околоземной орбите, или если улетаем к внешним краям Солнечной системы - наша планета голубая. Почему? Что делает ее голубой? Очевидно, не вся планета голубая. Облака белые, отражают белый, прямой солнечный свет на смотрящего сверху. Лед - например, на полярных полюсах - белый по той же причине. Континенты коричневые или зеленые, если смотреть издалека, в зависимости от времени года, рельефа и растительности.

    Из этого можно сделать важный вывод: Земля голубая не потому, что небо голубое. Если бы это было так, весь свет, отраженный от поверхности, был бы голубым, но мы этого не наблюдаем. Но есть намек, который оставляют истинно синие части планеты: моря и океаны Земли. Оттенок синего, которым обладает вода, зависит от ее глубины. Если присмотреться к снимку ниже, видно, что водные регионы, обрамляющие континенты (вдоль континентального шельфа), имеют более светлый оттенок синего, чем глубокие, темные места океана.

    Возможно, вы слышали, что океан синий, потому что небо голубое, а вода отражает небо. Небо голубое, это точно. И небо голубое, поскольку наша атмосфера эффективнее рассеивает голубой (с короткой длиной волны), чем красный свет (с более длинной волной). Отсюда:

    • Небо кажется голубым в течение дня, поскольку коротковолновый свет, попадающий в атмосферу, рассеивается во всех направлениях, и больше «синего» попадает в наши глаза, по сравнению с остальными.
    • Солнце и Луна выглядят красными на восходе и закате, поскольку голубой свет, проходя через толстые слои атмосферы, рассеивается, а остается преимущественно насыщенный красный свет, который и попадает нам в глаза.
    • Луна оказывается красной во время полного лунного затмения: красный свет, проходя через нашу атмосферу, будет падать на поверхность Луны, тогда как голубой свет с легкостью рассеивается.

    Но если бы объяснение было таким - что океан отражает небо - мы бы не видели этих оттенков синего, когда смотрели бы на более глубокую воду. По факту, если бы вы сделали снимок под водой при естественном освещении, без дополнительных источников света, вы бы увидели - даже на самой скромной глубине, - что все имеет синеватый оттенок.

    Видите ли, океан состоит из молекул воды, а вода - как и все молекулы - избирательно поглощает свет определенных длин волн. Проще всего воде поглотить инфракрасный, ультрафиолетовый и красный свет. Это значит, что если вы окунете голову в воду даже на скромной глубине, вы будете защищены от Солнца, от ультрафиолетового излучения и все будет казаться голубым: красный свет будет исключен.

    Нырните глубже - пропадет и оранжевый.

    Еще ниже - желтый, зеленый, фиолетовый.

    Погрузившись на много километров, мы обнаружим, что исчез и голубой, хотя он исчезнет последним.

    Именно поэтому глубины океана темно-синие: все другие длины волн поглощаются, а у самого синего самая высокая вероятность отразиться и заново отправиться во Вселенную. По той же причине, если бы Земля была полностью покрыта океаном, отражалось бы всего 11% видимого солнечного света: океан прекрасно поглощает солнечный свет.

    Поскольку 70% поверхности мира покрыто океаном, и по большей части океаном глубоким, наш мир кажется голубым издалека.

    Уран и Нептун, два других голубых мира Солнечной системы, обладают атмосферами, состоящими преимущественно из водорода, гелия и метана. (Нептун богаче льдами и обладает более широким разнообразием компонентов, следовательно, имеет другой оттенок). В достаточно больших концентрациях, метан чуть лучше поглощает красный свет и чуть лучше отражает голубой, чем другие длины волн, тогда как водород и гелий практически прозрачны для всех частот видимого света. В случае голубых газовых гигантов, действительно имеет значение цвет неба.

    Но на Земле? Наша атмосфера достаточно тонкая, чтобы никак не влиять на окраску планеты. Небо и океан голубые вовсе не из-за отражений; они голубые, синие, но каждый по своей воле. Если убрать океаны, человек на поверхности все равно будет видеть голубое небо, и если убрать наше небо (и при этом оставить непостижимым образом жидкую воду на поверхности), наша планета тоже останется голубой.

    Наша планета единственная в нашей солнечной системе имеет свой уникальный голубоватый цвет. Все остальные планеты, а также их спутники, имеют однотонные светлые или сероватые оттенки, в то время как Земля даже при наблюдении из Космоса кажется цветущим источником жизни. Но почему Земля из космоса кажется голубой, мы разберемся ниже.

    Почему Земля – голубая планета

    Возникновение такого неофициального названия, которым люди нередко называют нашу планету, вполне очевидно. Ведь, в действительности, открыв любое изображение нашей планеты из Космоса, можно заметить, что по большей части она имеет голубой оттенок. Это и привело к тому, что люди сегодня называют Землю «Голубой планетой».

    Почему Землю называют голубой планетой

    По большому счету, вполне очевиден и факт того, почему Землю называют именно так. И для того чтобы это понять, нам, опять же, необходимо взглянуть на фото Земли из Космоса. Благо, современные технологии позволяют нам с избытком найти такие фото или даже посмотреть на планету в интерактивных картах через интернет.

    Несложно заметить, что Земля, по большей части покрытая мировым океаном, имеет голубоватый оттенок именно за счет вод, преобладающих на её поверхности. Именно цвет совокупности рек, озер, всевозможных водоемов, придает планете этот волшебный голубоватый оттенок.

    Однако здесь возникает вопрос о том, почему океан голубой, ведь вода, как известно – прозрачная. В данной ситуации многие люди предполагают, что океан отражает в себе цвет неба, однако это достаточно абсурдная гипотеза.

    Почему океан из космоса кажется голубым

    Для начала необходимо развеять миф об отражении в океане цвета неба, ответив на вопрос, почему небо с Земли кажется голубым. Причиной такому эффекту является то, что лучи солнечного света, долетающие к нам через глубины Космоса, рассеиваются в нашей атмосфере, а часть синего цвета добирается до наших глаз.

    И в случае с океаном происходит примерно такая же ситуация – вода также выполняет роль своеобразного экрана, рассеивая солнечное излучение. Молекулы воды поглощают как красный, так и инфракрасный, и ультрафиолетовый свет. Именно поэтому под водой все кажется голубым.

    На большой глубине, к слову, поглощается и голубой оттенок, за счет чего мы окунаемся в полную тьму. Однако поверхность океана остается голубоватой именно по причине рассеивания красного, инфракрасного и ультрафиолетового света, и это приводит к тому, что даже из Космоса большая часть нашей планеты кажется голубой.