Войти
Логопедический портал
  • Поступить в мгимо вполне реально
  • История корабля Бизань мачта парусника сан джованни баттиста
  • Буква М, м. Согласный звук и. Буква М, м Шпаргалка по уподоблению согласных звуков по месту образования
  • Самые известные бытовые сказки
  • Картотека логопеда: задания по лексическим темам воспитателям подготовительной к школе группы
  • Архимандрит Келопа (Илие)
  • С4-путь фотосинтеза (цикл хетча и слэка). Сравнительная характеристика -С3 и -С4 растений Темновая фаза фотосинтеза

    С4-путь фотосинтеза (цикл хетча и слэка). Сравнительная характеристика -С3 и -С4 растений Темновая фаза фотосинтеза

    С4-растения (С4 plants) - растения, у которых третий этап фотосинтеза протекает с присоединением углекислого газа не к рибулозодифосфату (как у С3-растений), а к трехуглеродному соединению - фосфоенолпировиноградной кислоте, что приводит к образованию четырехуглеродного (С4) соединения - щавелево-уксусной кислоты. К этому типу относятся такие растения, как кукуруза и некоторые другие злаки, преимущественно тропических и субтропических растений (сахарный тростник, сорго)

    С3-растения (C3 plants) [англ. c(arbon) - углерод, от лат. carbo - уголь] - растения, у которых третий этап фотосинтеза протекает с участием цикла Кальвина (восстановительный пентозофосфатный цикл, при котором первым продуктом является трехуглеродное (С3) соединение - фосфоглицериновая кислота). К этому типу относится большинство растений.

    Физиолого-биохимичсекие различия между С3- и С4-растениями.

    У большинства растений первым продуктом фотосинтеза является фосфоглицериновая кислота, содержащая 3 атома водорода. Такие растения называются С3-растениями. Однако уже давно было обнаружено, что у некоторых растений первым продуктом фотосинтеза являются органические кислоты не с тремя, а с четырьмя атомами углерода – щавелевоуксусная и яблочная (малат). Такие растения называются С4-растениями, к ним относятся многие тропические и субтропические растения, в т.ч. некоторые важные культурные виды – сахарный тростник, просо, сорго и кукуруза.

    С4-растения имеют характерную особенность в строении листа: у них проводящие пучки окружены 2 кольцами клеток – внешним и внутренним. Внешнее кольцо состоит из обычных клеток мезофилла, а внутреннее – из 222b14hc специализированных клеток, которые называются клетками обкладки проводящего пучка. Клетки обкладки похожи на клетки мезофилла, но отличаются от них строением хлоропластов: в их хлоропластах очень слабо развита система внутренних мембран и содержится очень мало хлорофилла, поэтому хлоропласты клеток обкладки бледно-зеленые. Такое строение листа у С4-растений называется кранц-анатомией («кранц» в переводе означает корона или ореол).

    Биохимические различия между С4- и С3-растениями.

    Внешние различия между С3- и С4-растениями обусловлены тем, что у них фотосинтез идет по-разному. У С3-растений в одном и том же хлоропласте фиксируется СО 2 , образуется водород и АТФ, а затем в ходе темновой фазы эти вещества используются для синтеза органических веществ. У С4-растений эти процессы разделены в пространстве: АТФ, водород и СО 2 накапливаются в хлоропластах клеток мезофилла, а оттуда транспортируются в хлоропласты клеток проводящего пучка, где из них синтезируются органические вещества. Такой транспорт называется путем Хетча-Слека. У С4-растений между световой и темновой фазами происходит еще 3 стадии фотосинтеза.

    13.Методы учета фотосинтеза: качественные и количественные.

    Опишем в самых кратких чертах методы определения фотосинтеза. Эти методы могут быть разбиты на две категории:

    1.методы, связанные с учетом органических продуктов фотосин­теза;

    2.газометрические методы, учитывающие выделение кислорода или поглощение углекислоты.

    Как первые, так и вторые могут быть качествен­ного, сравнительного и количественного характера. Из качественных мето­дов мы уже знаем крахмальную пробу. Ее можно произвести не только микроскопически, но и макроскопически. Для этого берут обескрахмаленный лист и выставляют его на свет, закрывши часть листа темной бумагой или станиолью. В тех местах, которые не были закрыты бумагой, образуется крахмал. Последнее легко доказать, обесцвечивая лист спир­том и действуя на него раствором йода в йодистом калии.

    Работа по методу половинок возможна только с крупными и симметричными листьями. От листа вдоль по средней жилке срезается по­ловинка. Из нее шаблоном вырезается определенная площадь и высушивает­ся до сухого веса при 105 °C. Вторая половинка листа оставляется на расте­нии на свету в течение нескольких часов. После этого с нею поступают так же, как и с первой. Кроме того, в опыте должен быть и второй лист, у ко­торого оставляется на несколько часов закрытая темной бумагой половин­ка для учета оттока углеводов из листа и его дыхания. Привес взятой поло­винки первого листа с прибавленной к нему убылью второй и даст нам ве­личину фотосинтеза. Ее обычно вычисляют на 1 дм2 площади листа за один час.

    Из методов, основанных на изучении другой стороны фотосинтеза, а имен­но учитывающих газообмен, следует отметить качественный метод учета выделившегося кислорода. Водное расте­ние, например элодея, выставляется на свет, и выделяющийся кислород со­бирается в наполненную водой пробирку (рис. 102). Когда кислорода соби­рается достаточное количество, вынимают пробирку и вносят в нее тлеющую лучинку. Лучинка вспыхивает.

    Сравнительный метод счета пузырьков также прово­дится с водным растением элодеей. Для этого устанавливают ветку элодеи в пробирке таким образом, чтобы ее конус нарастания был обращен вниз, а срез стебля вверх. Из среза стебля выделяются пузырьки кислорода, число которых и подсчитывается за одну минуту. Используя этот метод, можно выяснить относительную интенсивность процесса фотосинтеза в зависи­мости от температуры и качества света.

    Количественные газометрические методы по учету фотосинтеза много­образны. Остановимся лишь на одном, который дает возможность изучать процесс в естественной обстановке (рис. 103). Не отрывая от растения лист, его заключают в стеклянную камеру, сквозь которую просасывается воздух при помощи аспиратора. Воздух с оставшейся после фотосинтеза углекис­лотой проходит через специальную трубку с налитым в нее раствором бари­та (едкий барий), поглощающим оставшуюся углекислоту воздуха. Перед входом в трубку небольшой продырявленной пластинкой воздух разбивает­ся на мелкие пузырьки, которые, проходя через раствор барита, отдают раст­вору находящуюся в них углекислоту. После окончания опыта раствор ба­рита титруют кислотой. Чем больше поглотилось углекислого газа зеленым листом, тем больше кислоты пойдет на титрование, так как при этом будет образовываться меньшее количество углекислого бария. Параллельно ста­вится вторая трубка, через которую пропускается воздух, чтобы определить в нем содержание углекислоты и выяснить количество углекислоты, поглощенной зеленым листом. Метод этот хорош тем, что дает возможность определить фотосинтез в природной обстановке при нормальном содержании углекислоты в воздухе. Недостатком его являются искусственные условия в камере, приводящие нередко к перегреву листа. При перегреве нормаль­ный ход фотосинтеза изменяется, так как интенсивность процесса при этом сильно падает.

    В результате фотохимических реакции в хлоропластах создается необходимый уровень АТР и NADPH. Эти конечные продукты световой фазы фотосинтеза стоят на входе в темновую фазу, где СО 2 восстанавливается до углевода:

    Сами по себе АТР и NADPH не в состоянии восстановить СО 2 . Очевидно, и темновая фаза фотосинтеза - сложный процесс, включающий большое количество реакций. Кроме того, существуют различные пути восстановления СО 2 . В настоящее время известны так называемые С 3 -путь и С 4 -путь фиксации СО 2 , фотосинтез по типу толстянковых (САМ-метаболизм) и фотодыхание.

    С 3 -путь. Этот способ ассимиляции СО 2 , присущий всем растениям, в 1946-1956 гг. был расшифрован американским биохимиком М. Кальвином и его сотрудниками, в силу чего он получил название цикла Кальвина . Этот цикл, весьма напоминающий обращенный пентозофосфатный путь дыхания, состоит из трех этапов: карбоксилирования, восстановления и регенерации.

    1. Карбоксилирование. Молекулы рибулозо-5-фосфата фосфорилируются с участием АТР и фосфорибулозокиназы, в результате чего образуются молекулы рибулозо-1,5-дифосфата, к которым в свою очередь присоединяется СО 2 с помощью рибулозодифосфаткарбоксилазы. Полученный продукт расщепляется на две триозы: 2 молекулы 3-фосфоглицериновой кислоты (3-ФГК).

    2. Фаза восстановления. 3-ФГК восстанавливается до 3-фосфоглицеринового альдегида (3-ФГА) в два этапа. Сначала происходит фосфорилирование 3-ФГК при участии АТР и фосфоглицераткиназы до 1,3-дифосфоглицериновой кислоты, а затем восстановление 1,3-ФГК с помощью NADPH и дегидрогеназы фосфоглицеринового альдегида.

    3. Фаза регенерации первичного акцептора диоксида углерода и синтеза конечного продукта фотосинтеза. В результате описанных выше реакций при фиксации трех молекул СО 2 и образовании шести молекул восстановленных 3-фосфотриоз пять из них используются затем для регенерации рибулозо- 5-фосфата, а один - для синтеза глюкозы. 3-ФГА под действием триозофосфатизомеразы изомеризуется в фосфодиоксиацетон. При участии альдолазы 3-ФГА и фосфодиоксиацетон конденсируются с образованием фруктозе-1,6-дифосфата, у которого отщепляется один фосфат с помощью фруктозе-1,6- дифосфатазы. В дальнейших реакциях, связанных с регенерацией первичного акцептора СО 2 , последовательно принимают участие транскетолаза и альдолаза. Транскетолаза катализирует перенос содержащего два углерода гликолевого альдегида от кетозы на альдозу.

    1 – фосфорибулокиназа, 2 – рибулозодифосфаткарбоксилаза, 3 - фофсфоглицераткиназа, 4 – триозофосфатдегидрогеназа, 5 – триозофосфатизомераза, 6 – альдолаза, 7 – фосфатаза, 8 – транскетолаза, 9 – альдолаза, 10 – фосфатаза, 11 – транскетолаза, 12 – рибозофосфатизомераза, 13 – фосфокетопентоэпимераза


    Альдолаза затем осуществляет перенос трехуглеродного остатка фосфодиоксиацетона на альдозу, в данном случае на эритрозо-4-фосфат, в результате чего синтезируется седогептулозо-1,7-дифосфат. Последний дефосфорилируется и под действием транскетолазы из него и 3-ФГА образуются ксилулозо-5-фосфат и рибозо-5-фосфат. Две молекулы ксилулозо-5-фосфата при участии рибулозофосфатэпимеразы и одна молекула рибозо-5-фосфата с участием рибозофосфатизомеразы превращаются в три молекулы рибулозо-5-фосфата, с которого начинается новый цикл фиксации СО 2 .

    Из оставшейся неиспользованной 6-й молекулы 3-ФГА под действием альдолазы синтезируется (при повторении цикла) молекула фруктозе-1,6-дифосфата, из которой могут образовываться глюкоза, сахароза или крахмал:

    Таким образом, для синтеза одной молекулы глюкозы в цикле Кальвина необходимы 12 NADPH и 18 АТР, которые поставляются в результате фотохимических реакций фотосинтеза.

    К С 4 -растениям относится ряд культурных растений преиму­щественно тропического и субтропического происхождения - кукуруза, просо, сорго, сахарный тростник и многие злостные сорняки - свинорой, сыть округлая, ежовник крестьянский, просо куриное, просо крупное, гумай (сорго алепское), щирица, щетинник и др. Как правило, это высокопродуктивные растения, устойчиво осуществляющие фотосинтез при значительных по­вышениях температуры и в засушливых условиях.

    Для листьев С 4 -растений характерно анатомическое строение кранц-типа (от нем. Kranz - венок, корона), т.е. наличие явно отличающихся друг от друга фотосинтезирующих клеток двух типов, которые располагаются концентрическими кругами: радиально расположенные вокруг проводящих пучков клетки обклад­ки и основной мезофилл.

    Клетки обкладки проводящего пучка содержат крупные, ли­шенные гран (агранальные) хлоропласты. В клетках мезофилла находятся более мелкие гранальные хлоропласты. Эти два типа клеток физиологически не равноценны и специализируются на выполнении разных звеньев фотосинтеза. С 4 -цикл можно разде­лить на две стадии: карбоксилирование, происходящее в клетках мезофилла, и декарбоксилирование и синтез углеводов, идущие в клетках обкладки проводящих пучков. Общим для всех С 4 -расте­ний является то, что карбоксилированию подвергается фосфоенолпировиноградная кислота (ФЕП) при участии ФЕП-карбоксилазы и образуется щавелевоуксусная кислота (ЩУК), которая восстанавливается до яблочной кислоты или аминируется с образованием аспарагиновой кислоты.

    Щавелевоуксусная, яблочная и аспарагиновая кислоты являются четырехуглеродными соединениями.

    По способу декарбоксилирования при участии НАДФ-Н или НАД-малатдегидрогеназы (МДГ, называемой также маликэнзимом и яблочным фермен­том) или ФЕП-карбоксикиназы (ФЕП-КК) у С 4 -растений можно выделить три группы: НАДФ-МДГ, НАД-МДГ и ФЕП-КК-типы соответственно.

    У НАДФ-МДГ-растений глав­ными метаболитами, вовлечен­ными в обмен между клетками, являются малат и пируват (ПВК), у НАД-МДГ-растений - аспартат и аланин и у ФЕП-КК-растений - аспартат и ФЕП. Важ­нейшие сельскохозяйственные культуры - кукуруза, сорго, са­харный тростник и такие распространенные сорняки, как сыть, ежовник, щетинник, гумай, относятся к НАДФ-МДГ-типу.

    Рассмотрим С 4 -цикл восстановления СО 2 на примере этих растений. СО 2 , поступающий в лист через устьица, попадает в цитоплазму клеток мезофилла, где при участии ФЕП-карбоксилазы вступает в реакцию с ФЕП, образуя щавелевоуксусную кислоту (оксалоацетат, или ЩУК). Затем уже в хлоропластах оксалоацетат восстанавливается до яблочной кислоты (малата) за счет НАДФ-Н, образующегося в ходе световой фазы фотосинтеза; ЩУК в присутствии NH 4 может превращаться также в аспартат.

    Затем малат переносится в хлоропласты клеток обкладки со­судистого пучка, где он подвергается окислительному декарбоксилированию, продуктом которого является пировиноградная кислота (ПВК). Последняя снова диффундирует в мезофилл, где при участии АТФ, образованной в световой фазе, происходит регенерация ФЕП, после чего цикл карбоксилирования повторя­ется с участием новой молекулы СО 2 . Образовавшиеся в резуль­тате окислительного декарбоксилирования малата СО 2 и НАДФ-Н поступают в цикл Кальвина, что приводит к образова­нию ФГК и других продуктов, свойственных С 3 -растениям. Сле­довательно, именно клетки обкладки выполняют роль основной ассимилирующей ткани, поставляющей сахара в проводящую систему. Клетки мезофилла выполняют вспомогательную функ­цию - подкачку СО 2 для цикла Кальвина. Таким образом, С 4 -путь обеспечивает более полное усвоение СО 2 , что особенно важно для тропических растений, где основным лимитирующим фактором фотосинтеза является концентрация СО 2 . Эффективность усвоения СО 2 С 4 -растениями увеличивается также за счет подачи НАДФ-Н в хлоропласты клеток обкладки. Эти хлороплас­ты имеют агранальное строение и специализируются на темновой фазе фотосинтеза, здесь практически не происходит нецик­лическое фотофосфорилирование. На один агранальный хлоро­пласт в среднем приходится 8-10 гранальных хлоропластов, осуществляющих первичную фиксацию СО 2 и нециклическое фотофосфорилирование. Такая компартментация процессов и кооперация функционирования тканей обеспечивают повышение продуктивности растений и позволяют накапливать СО 2 в орга­нических кислотах для осуществления фотосинтеза даже при закрытых устьицах в наиболее жаркое время дня. Это сокращает потери воды на транспирацию. Эффективность использования воды С 4 -растениями вдвое выше, чем у С 3 -растений. Физиолого-биохимические различия между С 3 и С 4 -растениями системати­зированы в таблице.

    Сравнительная характеристика С 3 - и С 4 -растений

    В 1966 году австралийские ученые М. Хетч и К. Слэк установили, что у некоторых злаковых растений тропического и субтропического происхождения фотосинтез имеет свои особенности.

    Особенность заключается в том, что в качестве первых продуктов фотосинтеза у этой группы растений образуется не трех, а четырехуглеродные соединения. При образовании 4-х углеродных соединений, углекислота соединяется не с рибулезодифосфатом, а с * кислотой. Путь ассимиляции СО 2 через * кислоту с образованием С4-дикарбоновых кислот получил название С4-путь усвоения углерода, а организмы С4-растений.

    У растений тропического происхождения – сахарный тростник, сорго, просо, злаки, кукуруза, амарант и др. листовые сосудистые пучки окружены крупными клетками паренхимы с большими, зачастую лишенными гран хлоропластами. Эти клетки в свою очередь окружены более мелкими клеточками мезофилла с меньшими хлоропластами. В клетках мезофилла листа происходит первичное акцептирование СО 2 на * кислоту, которая вовлекает СО 2 в реакции карбоксилирования даже при очень низких концентрациях СО 2 в окружающем воздухе.

    В результате карбоксилирования образуются щавелево-уксусная, яблочная и аспарагиновая кислоты. Из них яблочная и аспарагиновая переходят в обкладочные клетки проводящих пучков листа, подвергаются там декарбоксилированию и создают внутри клеток высокую концентрацию СО 2 , усваиваемую уже через рибулозодифосфат-карбоксилазу в цикле Калвина. Это выгодно, во-первых потому, что облегчает введение СО 2 в цикл Калвина через карбоксилирование рибулозодифосфата при помощи фермента рибулозодифосфат-карбоксилазы, которая менее активна и требует для оптимальной работы боле высоких концентраций СО 2 , чем *-карбоксилаза. Кроме того, высокая концентрация СО 2 в обкладочных клетках уменьшает световое дыхание и связанные с ним потери энергии.

    Таким образом происходит высокоинтенсивный и кооперативный фотосинтез, свободный от излишних потерь в световом дыхании, от кислородного ингибирования и хорошо приспособленный в атмосфере бедной СО 2 и богатой О 2 .

    Растения с С4-фотосинтезом – это цветковые растения из 19 семейств (3 сем. однодольных и 16 сем. двудольных). С4-злаки преобладают в районах с очень высокой температурой, приходящейся на вегетационный сезон. С4-двудольные широко распространены в тех районах, где вегетационный сезон характеризуется чрезмерной засушливостью. Для 23 семейств цветковых растений характерен метаболизм органических кислот по типу толстянковых, обозначенный как САМ-метаболизм. САМ-метаболизм возник в процессе эволюции у листьев суккулентных растений, включая кактусы и толстянки, но не все САМ-растения суккуленты, например, ананасы.

    Суккуленты, произрастающие в засушливых областях (кактус) так же фиксируют атмосферный СО 2 с образованием 4-х углеродных соединений. Однако по своему физиологическому поведению эти растения отличаются от других представителей С4-типа. Устьица у них открыты ночью и закрыты днем. Обычно же картина бывает обратной: свет стимулирует открывание устьиц, а в темноте они остаются закрытыми.

    Такой тип поведения представляет несомненную выгоду для растений пустыни. Эти растения поглощают в ночное время атмосферную СО2 образуя в результате её фиксацию 4-х углеродной органической кислоты, главным образом яблочную. Яблочная кислота запасается в вакуолях. Роль первичного акцептора углерода играет у них, как и у прочих С4-растений ФЕП. Днем, когда хлорофилл активируется светом, яблочная кислота декарбоксилируется с образованием 3-х углеродного соединения и СО2, их которой затем и строятся 6-углеродные сахара в цикле Кальвина.

    Чередование на протяжении суток двух процессов: накопление кислот в ночное время и их распад днем получило название САМ-метаболизма, по семейству Crassulaceae.

    У САМ-растений первичное карбоксилирование и образование 6-углеродных сахаров происходит в одних и тех же клетках, но в разное время. Тогда как у прочих С4-растений эти процессы происходят одновременно, но могут быть приурочены к разным клеткам. Разделение во времени фиксации СО 2 и переработки СО 2 на следующий день экономически выгодно. Таким образом, они обеспечивают себя углеродом, не подвергаясь чрезмерной потере воды.