Войти
Логопедический портал
  • Любить свою Родину - значит знать её!
  • Деникин Антон - биография, факты из жизни, фотографии, справочная информация
  • Поступить в мгимо вполне реально
  • История корабля Бизань мачта парусника сан джованни баттиста
  • Буква М, м. Согласный звук и. Буква М, м Шпаргалка по уподоблению согласных звуков по месту образования
  • Самые известные бытовые сказки
  • Решить выражение 8. Грамотное преобразование рациональных выражений. Защита персональной информации

    Решить выражение 8. Грамотное преобразование рациональных выражений. Защита персональной информации

    Алгебраическое выражение в записи которого наряду с действиями сложения, вычитания и умножения используют также деление на буквенные выражения, называется дробным алгебраическим выражением. Таковы, например, выражения

    Алгебраической дробью мы называем алгебраическое выражение, имеющее вид частного от деления двух целых алгебраических выражений (например, одночленов или многочленов). Таковы, например, выражения

    Третье из выражений ).

    Тождественные преобразования дробных алгебраических выражений имеют по большей части своей целью представить их в виде алгебраической дроби. Для отыскания общего знаменателя используется разложение на множители знаменателей дробей - слагаемых с целью отыскания их наименьшего общего кратного. При сокращении алгебраических дробей может нарушаться строгая тождественность выражений: необходимо исключать значения величин, при которых множитель, на который производится сокращение, обращается в нуль.

    Приведем примеры тождественных преобразований дробных алгебраических выражений.

    Пример 1. Упростить выражение

    Все слагаемые можно привести к общему знаменателю (удобно при этом изменить знак в знаменателе последнего слагаемого и знак перед ним):

    Наше выражение равно единице при всех значениях кроме этих значениях оно не определено и сокращение дроби незаконно).

    Пример 2. Представить в виде алгебраической дроби выражение

    Решение. За общий знаменатель можно принять выражение . Находим последовательно:

    Упражнения

    1. Найти значения алгебраических выражений при указанных значениях параметров:

    2. Разложить на множители.

    В начале урока мы повторим основные свойства квадратных корней, а затем рассмотрим несколько сложных примеров на упрощение выражений, содержащих квадратные корни.

    Тема: Функция . Свойства квадратного корня

    Урок: Преобразование и упрощение более сложных выражений с корнями

    1. Повторение свойств квадратных корней

    Вкратце повторим теорию и напомним основные свойства квадратных корней.

    Свойства квадратных корней:

    1. , следовательно, ;

    3. ;

    4. .

    2. Примеры на упрощение выражений с корнями

    Перейдем к примерам использования этих свойств.

    Пример 1. Упростить выражение .

    Решение. Для упрощения число 120 необходимо разложить на простые множители:

    Квадрат суммы раскроем по соответствующей формуле:

    Пример 2. Упростить выражение .

    Решение. Учтем, что данное выражение имеет смысл не при всех возможных значениях переменной, т. к. в данном выражении присутствуют квадратные корни и дроби, что приводит к «сужению» области допустимых значений. ОДЗ: ().

    Приведем выражение в скобках к общему знаменателю и распишем числитель последней дроби как разность квадратов:

    Ответ. при.

    Пример 3. Упростить выражение .

    Решение. Видно, что вторая скобка числителя имеет неудобный вид и нуждается в упрощении, попробуем разложить ее на множители с помощью метода группировки.

    Для возможности выносить общий множитель мы упростили корни путем их разложения на множители. Подставим полученное выражение в исходную дробь:

    После сокращения дроби применяем формулу разности квадратов.

    3. Пример на избавление от иррациональности

    Пример 4. Освободиться от иррациональности (корней) в знаменателе: а) ; б) .

    Решение. а) Для того чтобы избавиться от иррациональности в знаменателе, применяется стандартный метод домножения и числителя и знаменателя дроби на сопряженный к знаменателю множитель (такое же выражение, но с обратным знаком). Это делается для дополнения знаменателя дроби до разности квадратов, что позволяет избавиться от корней в знаменателе. Выполним этот прием в нашем случае:

    б) выполним аналогичные действия:

    4. Пример на доказательство и на выделение полного квадрата в сложном радикале

    Пример 5. Докажите равенство .

    Доказательство. Воспользуемся определением квадратного корня, из которого следует, что квадрат правого выражения должен быть равен подкоренному выражению:

    . Раскроем скобки по формуле квадрата суммы:

    , получили верное равенство.

    Доказано.

    Пример 6. Упростить выражение .

    Решение. Указанное выражение принято называть сложным радикалом (корень под корнем). В данном примере необходимо догадаться выделить полный квадрат из подкоренного выражения. Для этого заметим, что из двух слагаемых является претендентом на роль удвоенного произведения в формуле квадрата разности (разности, т. к. присутствует минус). Распишем его в виде такого произведения: , тогда на роль одного из слагаемых полного квадрата претендует , а на роль второго - 1.

    Подставим это выражение под корень.

    Вам понадобится

    • - понятие одночлена многочлена;
    • - формулы сокращенного умножения;
    • - действия с дробями;
    • - основные тригонометрические тождества.

    Инструкция

    Если в выражении имеются одночлены с , найдите сумму коэффициентов при них и умножьте на единый для них множитель. Например, если есть выражение 2 а-4 а+5 а+а=(2-4+5+1)∙а=4∙а.

    В том случае, если выражение представляет собой натуральную дробь, выделите из числителя и знаменателя общий множитель и сократите дробь на него. Например, если нужно сократить дробь (3 a²-6 a b+3 b²)/(6∙a²-6∙b²), вынесите из числителя и знаменателя общие множители в числителе это будет 3, в знаменателе 6. Получите выражение (3 (a²-2 a b+b²))/(6∙(a²-b²)). Сократите числитель и знаменатель на 3 и примените к оставшимся выражениям формулы сокращенного умножения. Для числителя это квадрат разности, а для знаменателя разность квадратов. Получите выражение (a-b)²/(2∙ (a+b)∙(a-b)) сократив его на общий множитель a-b, получите выражение (a-b)/(2∙ (a+b)), которое при конкретных значениях переменных гораздо легче посчитать.

    Если одночлены имеют одинаковые множители, возведенные в степень, то при их суммировании следите, чтобы степени были равны, иначе сводить подобные нельзя. Например, если есть выражение 2∙m²+6 m³-m²-4 m³+7, то при сведении подобных получится m²+2 m³+7.

    При упрощении тригонометрических тождеств используйте формулы для их преобразования. Основное тригонометрическое тождество sin²(x)+cos²(x)=1, sin(x)/cos(x)=tg(x), 1/ tg(x)= ctg(x), формулы суммы и разности аргументов, двойного, тройного аргумента и другие. Например, (sin(2∙x)- cos(x))/ ctg(x). Распишите формулу двойного аргумента и котангенса, как отношения косинуса на синус. Получите (2∙ sin(x) cos(x)- cos(x)) sin(x)/cos(x). Вынесите общий множитель, cos(x) и сократите дробь cos(x) (2∙ sin(x) - 1) sin(x)/cos(x)= (2∙ sin(x) - 1) sin(x).

    Видео по теме

    Источники:

    • формула упрощения выражения

    Краткость, как говорится, - сестра таланта. Каждому хочется блеснуть талантом, но вот его сестра - штука сложная. Гениальные мысли почему-то сами собой облекаются в сложноподчинённые предложения со множеством деепричастных оборотов. Однако в ваших силах упростить свои предложения и сделать их понятными и доступными всем.

    Инструкция

    Чтобы облегчить адресату (будь то слушатель или читатель) , постарайтесь заменять причастные и деепричастные обороты короткими придаточными предложениями, особенно если вышеуказанных оборотов слишком много в одном предложении. "Пришедший домой кот, только что съевший мышь, громко мурлыча, ласкался к хозяину, пытаясь заглянуть ему в глаза, надеясь выпросить рыбу, принесённую из магазина" - не пойдёт. Разбейте подобную конструкцию на несколько частей, не торопитесь и не пытайтесь сказать всё одним предложением, вам счастье.

    Если вы задумали гениальное высказывание, но в нём оказалось слишком много придаточных предложений (тем более с одним ), то лучше разбить высказывание на несколько отдельных предложений или опустить какой-то элемент. "Мы решили, что он расскажет Марине Васильевне, что Катя скажет Вите, что..." - можно продолжать бесконечно. Вовремя остановитесь и вспомните о том , кто будет это читать или выслушивать.

    Однако подводные камни кроются не только в структуре предложения. Обратите внимание на лексику. Иноязычные слова, длинные термины, слова, почерпнутые из художественной литературы 19 века - всё это только осложнит восприятие. Необходимо уточнить для себя, для какой аудитории вы составляете текст: технари, конечно, поймут и сложные термины, и специфические слова; но если вы те же слова предложите учительнице литературы, вряд ли она вас поймёт.

    Талант - великая вещь. Если вы талантливы (а людей без способностей не бывает), перед вами открывается множество дорог. Но талант состоит не в сложности, а простоте, как ни странно. Будьте проще, и ваши таланты будут понятны и доступны всем.

    Видео по теме

    Научиться упрощать выражения в математике просто необходимо, чтобы правильно и быстро решать задачи, различные уравнения. Упрощение выражения подразумевает уменьшение количества действий, что облегчает вычисления и экономит время.

    Инструкция

    Научитесь вычислять степени с . При умножении степеней с получают числа, основание которого прежним, а показатели степеней складываются b^m+b^n=b^(m+n). При делении степеней с одинаковыми основаниями получают степень числа, основание которого остается прежним, а показатели степеней вычитаются, причем из показателя делимого вычитается показатель делителя b^m:b^n=b^(m-n). При возведении степени в степень получается степень числа, основание которого остается прежним, а показатели перемножаются (b^m)^n=b^(mn)При возведении в степень в эту степень возводится каждый множитель.(abc)^m=a^m*b^m*c^m

    Раскладывайте многочлены на множители, т.е. представляйте их в виде произведения нескольких сомножителей – многочленов и одночленов. Выносите общий множитель за скобки. Выучите основные формулы сокращенного умножения: разность квадратов, квадрат суммы, квадрат разности, сумму кубов, разность кубов, куб суммы и разности. Например, m^8+2*m^4*n^4+n^8=(m^4)^2+2*m^4*n^4+(n^4)^2. Именно эти формулы являются основными в упрощении выражений. Используйте способ выделения полного квадрата в трехчлене вида ax^2+bx+c.

    Как можно чаще сокращайте дроби. Например, (2*a^2*b)/(a^2*b*c)=2/(a*c). Но помните, что сокращать можно только множители. Если числитель и знаменатель алгебраической дроби умножать на одно и то же число, отличное от нуля, то при этом значение дроби не изменится. Преобразовывать рациональные выражения можно двумя способами: цепочкой и по действиям. Предпочтительней второй способ, т.к. легче проверить результаты промежуточных действий.

    Нередко в выражениях необходимо извлекать корни. Корни четной степени извлекаются только из неотрицательных выражений или чисел. Корни нечетной степени извлекаются из любых выражений.

    Источники:

    • упрощение выражений со степенями

    «Выражением» в математике обычно называют набор арифметических и алгебраических действий с числами и переменными значениями. По аналогии с форматом записи чисел такой набор называют «дробным» в том случае, когда он содержит операцию деления. К дробным выражениям, как и к числам в формате обыкновенной дроби, применимы операции упрощения.

    Инструкция

    Начните с нахождения общего множителя для , стоящих в числителе и - это одинаково как для численных соотношений, так и для содержащих неизвестные переменные. Например, если в числителе стоит выражение 45*X, а в знаменателе 18*Y, то наибольшим общим множителем будет число 9. После выполнения этого шага числитель можно записать как 9*5*X, а знаменатель - как 9*2*Y.

    Если выражения в числителе и знаменателе содержат комбинацию основных математических операций ( , деление, сложение и вычитание), то сначала придется вынести за скобки общий множитель для каждого из них в отдельности, а затем вычленить из этих чисел наибольший общий делитель. Например, для выражения 45*X+180, стоящего в числителе, за скобки следует вынести множитель 45: 45*X+180 = 45*(X+4). А выражение 18+54*Y в знаменателе надо привести к виду 18*(1+3*Y). Затем, как в предыдущем, шаге найдите наибольший общий делитель вынесенных за скобки множителей: 45*X+180 / 18+54*Y = 45*(X+4) / 18*(1+3*Y) = 9*5*(X+4) / 9*2*(1+3*Y). В этом примере он тоже равен девятке.

    Сократите найденный на предыдущих шагах общий множитель выражений в числителе и знаменателе дроби. Для примера из первого шага всю операцию упрощения можно записать так: 45*X / 18*Y = 9*5*X / 9*2*Y = 5*X / 2*Y.

    Не обязательно при упрощении сокращаемым общим делителем должно быть число, это может быть и выражение, содержащее переменную. Например, если в числителе дроби стоит (4*X + X*Y + 12 + 3*Y), а в знаменателе (X*Y + 3*Y - 7*X - 21), то наибольшим общим делителем будет выражение X+3, которое и следует сократить для упрощения выражения: (4*X + X*Y + 12 + 3*Y) / (X*Y + 3*Y - 7*X - 21) = (X+3)*(4+Y) / (X+3)*(Y-7) = (4+Y) / (Y-7).

    § 1 Понятие упрощения буквенного выражения

    В этом занятии познакомимся с понятием «подобные слагаемые» и на примерах научимся выполнять приведение подобных слагаемых, упрощая, таким образом, буквенные выражения.

    Выясним смысл понятия «упрощение». Слово «упрощение» образовано от слова «упрости́ть». Упрости́ть - значит сделать простым, проще. Следовательно, упростить буквенное выражение - это сделать его более коротким, с минимальным количеством действий.

    Рассмотрим выражение 9х + 4х. Это буквенное выражение, которое является суммой. Слагаемые здесь представлены в виде произведений числа и буквы. Числовой множитель таких слагаемых называется коэффициентом. В этом выражении коэффициентами будут числа 9 и 4. Обратите внимание, множитель, представленный буквой - одинаковый в обоих слагаемых данной суммы.

    Вспомним распределительный закон умножения:

    Чтобы умножить сумму на число, можно умножить на это число каждое слагаемое и полученные произведения сложить.

    В общем виде записывается так: (а + b) ∙ с = ac + bc.

    Этот закон выполняется в обе стороны ac + bc = (а + b) ∙ с

    Применим его к нашему буквенному выражению: сумма произведений 9х и 4х равна произведению, первый множитель которого равен сумме 9 и 4, второй множитель - х.

    9 + 4 = 13, получается 13х.

    9х + 4 х = (9 + 4)х = 13х.

    Вместо трех действий в выражении осталось одно действие - умножение. Значит, мы сделали наше буквенное выражение проще, т.е. упрости́ли его.

    § 2 Приведение подобных слагаемых

    Слагаемые 9х и 4х отличаются только своими коэффициентами - такие слагаемые называют подобными. Буквенная часть у подобных слагаемых одинаковая. К подобным слагаемым относятся также числа и равные слагаемые.

    Например, в выражении 9а + 12 - 15 подобными слагаемыми будут числа 12 и -15, а в сумме произведения 12 и 6а, числа 14 и произведения 12 и 6а (12 ∙6а + 14 + 12 ∙ 6а) подобными будут равные слагаемые, представленные произведением 12 и 6а.

    Важно отметить, что слагаемые, у которых равны коэффициенты, а буквенные множители различны, подобными не являются, хотя к ним полезно иногда применить распределительный закон умножения, например, сумма произведений 5х и 5у равна произведению числа 5 и суммы х и у

    5х + 5y = 5(x + y).

    Упрости́м выражение -9а + 15а - 4 + 10.

    Подобными слагаемыми в данном случае являются слагаемые -9а и 15а, так как они отличаются только своими коэффициентами. Буквенный множитель у них одинаковый, также подобными являются слагаемые -4 и 10, так как являются числами. Складываем подобные слагаемые:

    9а + 15а - 4 + 10

    9а + 15а = 6а;

    Получаем: 6а + 6.

    Упрощая выражение, мы находили суммы подобных слагаемых, в математике это называют приведением подобных слагаемых.

    Если приведение подобных слагаемых вызывает затруднение, можно придумать к ним слова и складывать предметы.

    Например, рассмотрим выражение:

    На каждую букву берем свой предмет: b-яблоко, с-груша, тогда получится: 2 яблока минус 5 груш плюс 8 груш.

    Можем из яблок вычесть груши? Конечно, нет. А вот к минус 5 грушам прибавить 8 груш можем.

    Приведем подобные слагаемые -5 груш + 8 груш. У подобных слагаемых буквенная часть одинаковая, поэтому при приведении подобных слагаемых достаточно выполнить сложение коэффициентов и к результату дописать буквенную часть:

    (-5 + 8) груш - получится 3 груши.

    Возвращаясь к нашему буквенному выражению, имеем -5 с + 8с = 3с. Таким образом, после приведения подобных слагаемых получим выражение 2b + 3с.

    Итак, на этом занятии Вы познакомились с понятием «подобные слагаемые» и научились упрощать буквенные выражения путем приведения подобных слагаемых.

    Список использованной литературы:

    1. Математика. 6 класс: поурочные планы к учебнику И.И. Зубаревой, А.Г. Мордковича//автор-составитель Л.А. Топилина. Мнемозина 2009.
    2. Математика. 6 класс: учебник для учащихся общеобразовательных учреждений. И.И.Зубарева, А.Г. Мордкович.- М.: Мнемозина, 2013.
    3. Математика. 6 класс: учебник для общеобразовательных учреждений/Г.В. Дорофеев, И.Ф. Шарыгин, С.Б. Суворова и др./по редакцией Г.В. Дорофеева, И.Ф. Шарыгина; Рос.акад.наук, Рос.акад.образования. М.: «Просвещение», 2010.
    4. Математика. 6 класс: учеб.для общеобразоват.учреждений/Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд. – М.:Мнемозина, 2013.
    5. Математика. 6 кл.:учебник/Г.К. Муравин, О.В. Муравина. – М.: Дрофа, 2014.

    Использованные изображения: