Войти
Логопедический портал
  • Любить свою Родину - значит знать её!
  • Деникин Антон - биография, факты из жизни, фотографии, справочная информация
  • Поступить в мгимо вполне реально
  • История корабля Бизань мачта парусника сан джованни баттиста
  • Буква М, м. Согласный звук и. Буква М, м Шпаргалка по уподоблению согласных звуков по месту образования
  • Самые известные бытовые сказки
  • Найти функцию плотности вероятности случайной величины. Плотность распределения вероятностей. Примеры Пуассоновских случайных величин

    Найти функцию плотности вероятности случайной величины. Плотность распределения вероятностей. Примеры
Пуассоновских случайных величин
    Математическое ожидание

    Дисперсия непрерывной случайной величины X , возможные значения которой принадлежат всей оси Ох, определяется равенством:

    Назначение сервиса . Онлайн калькулятор предназначен для решения задач, в которых заданы либо плотность распределения f(x) , либо функция распределения F(x) (см. пример). Обычно в таких заданиях требуется найти математическое ожидание, среднее квадратическое отклонение, построить графики функций f(x) и F(x) .

    Инструкция . Выберите вид исходных данных: плотность распределения f(x) или функция распределения F(x) .

    Задана плотность распределения f(x):

    Задана функция распределения F(x):

    Непрерывная случайна величина задана плотностью вероятностей
    (закон распределения Релея – применяется в радиотехнике). Найти M(x) , D(x) .

    Случайную величину X называют непрерывной , если ее функция распределения F(X)=P(X < x) непрерывна и имеет производную.
    Функция распределения непрерывной случайной величины применяется для вычисления вероятностей попадания случайной величины в заданный промежуток:
    P(α < X < β)=F(β) - F(α)
    причем для непрерывной случайной величины не имеет значения, включаются в этот промежуток его границы или нет:
    P(α < X < β) = P(α ≤ X < β) = P(α ≤ X ≤ β)
    Плотностью распределения непрерывной случайной величины называется функция
    f(x)=F’(x) , производная от функции распределения.

    Свойства плотности распределения

    1. Плотность распределения случайной величины неотрицательна (f(x) ≥ 0) при всех значениях x.
    2. Условие нормировки:

    Геометрический смысл условия нормировки: площадь под кривой плотности распределения равна единице.
    3. Вероятность попадания случайной величины X в промежуток от α до β может быть вычислена по формуле

    Геометрически вероятность попадания непрерывной случайной величины X в промежуток (α, β) равна площади криволинейной трапеции под кривой плотности распределения, опирающейся на этот промежуток.
    4. Функция распределения выражается через плотность следующим образом:

    Значение плотности распределения в точке x не равно вероятности принять это значение, для непрерывной случайной величины речь может идти только о вероятности попадания в заданный интервал. Пусть , если ее плотность вероятности имеет вид:

    Математическое ожидание и дисперсия равномерно распределенной случайной величины определяются выражениями

    3.8. Случайная величина X распределена равномерно на отрезке . Найти функцию распределения F (x ), математическое ожидание, дисперсию и среднее квадратичное отклонение величины.

    Решение . Плотность вероятности для величины X имеет вид:

    Следовательно, функция распределения, вычисляемая по формуле:

    ,

    запишется следующим образом:

    Математическое ожидание будет равно М х = (1 + 6)/2 = 3,5. Находим дисперсию и среднее квадратичное отклонение:

    D x = (6 – 1) 2 /12 = 25/12, .

    Нормальное распределение

    Случайная величина X распределена по нормальному закону, если ее функция плотности распределения вероятностей имеет вид:

    где М х – математическое ожидание;

    – среднее квадратичное отклонение.

    Вероятность попадания случайной величины в интервал (а , b ) находится по формуле

    Р (а < X < b ) = Ф – Ф = Ф(z 2) – Ф(z 1), (5)

    где Ф(z ) = – функция Лапласа.

    Значения функции Лапласа для различных значений z приведены в Приложении 2.

    3.9. Математическое ожидание нормально распределенной случайной величины X равно М х = 5, дисперсия равна D x = 9. Написать выражение для плотности вероятности.

    3.10. Математическое ожидание и среднее квадратичное отклонение нормально распределенной случайной величины X соответственно равны 12 и 2. Найти вероятность того, что случайная величина примет значение, заключенное в интервале (14; 16).



    Решение . Используем формулу (21.2), учитывая, что М х = 12, = 2:

    Р (14 < X < 16) = Ф((16 – 12)/2) – Ф(14 – 12)/2) = Ф(2) – Ф(1).

    По таблице значений функции Лапласа находим Ф(1) = 0,3413, Ф(2) = 0,4772. После подстановки получаем значение искомой вероятности:

    Р (14 <Х < 16) = 0,1359.

    3.11. Имеется случайная величина X , распределенная по нормальному закону, математическое ожидание которой равно 20, среднее квадратичное отклонение равно 3. Найти симметричный относительно математического ожидания интервал, в который с вероятностью р = 0,9972 попадет случайная величина.

    Решение . Так как Р (х 1 < Х < х 2) = р = 2Ф((х 2 – М х )/ ), то Ф(z ) = р /2 = 0,4986. По таблице функции Лапласа находим значение z , соответствующее полученному значению функции Ф(z ) = 0,4986: z = 2,98. Учитывая то, что z = (х 2 – М х )/ , определяем = х 2 – М х = z = 3 · 2,98 = 8,94. Искомый интервал будет иметь вид (11,06; 28,94).

    Учтем, что f (x ) = F" (x ). Тогда получим:

    Подставим в выражение для математического ожидания

    .

    Интегрируя по частям, получаем М х = 1/ , или М х = 1/0,1.

    Для определения дисперсии проинтегрируем по частям первое слагаемое. В результате получим:

    .

    Учтем найденное выражение для М х . Откуда

    .

    В данном случае М х = 10, D x = 100.

    СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН

    Результат любого случайного эксперимента можно характеризовать качественно и количественно. Качественный результат случайного эксперимента - случайное событие . Любая количественная характеристика , которая в результате случайного эксперимента может принять одно из некоторого множества значений, - случайная величина. Случайная величина является одним из центральных понятий теории вероятностей.

    Пусть - произвольное вероятностное пространство. Случайной величиной называется действительная числовая функция x =x (w ), w W , такая, что при любом действительном x .

    Событие принято записывать в виде x < x . В дальнейшем случайные величины будем обозначать строчными греческими буквами x , h , z , …

    Случайной величиной является число очков, выпавших при бросании игральной кости, или рост случайно выбранного из учебной группы студента. В первом случае мы имеем дело с дискретной случайной величиной (она принимает значения из дискретного числового множества M= {1, 2, 3, 4, 5, 6} ; во втором случае - с непрерывной случайной величиной (она принимает значения из непрерывного числового множества - из промежутка числовой прямой I =).

    Каждая случайная величина полностью определяется своей функцией распределения .

    Если x .- случайная величина, то функция F (x ) = F x (x ) = P (x < x ) называется функцией распределения случайной величины x . Здесь P (x < x ) - вероятность того, что случайная величина x принимает значение, меньшее x .

    Важно понимать, что функция распределения является “паспортом” случайной величины: она содержит всю информация о случайной величине и поэтому изучение случайной величины заключается в исследовании ее функции распределения, которую часто называют просто распределением .

    Функция распределения любой случайной величины обладает следующими свойствами:

    Если x - дискретная случайная величина, принимающая значения x 1 < x 2 < … < x i < … с вероятностями p 1 < p 2 < … < p i < …, то таблица вида

    x 1 x 2 x i
    p 1 p 2 p i

    называется распределением дискретной случайной величины .

    Функция распределения случайной величины, с таким распределением, имеет вид

    У дискретной случайной величины функция распределения ступенчатая. Например, для случайного числа очков, выпавших при одном бросании игральной кости, распределение, функция распределения и график функции распределения имеют вид:

    1 2 3 4 5 6
    1/6 1/6 1/6 1/6 1/6 1/6

    Если функция распределения F x (x ) непрерывна, то случайная величина x называется непрерывной случайной величиной.

    Если функция распределения непрерывной случайной величины дифференцируема , то более наглядное представление о случайной величине дает плотность вероятности случайной величины p x (x ), которая связана с функцией распределения F x (x ) формулами

    и .

    Отсюда, в частности, следует, что для любой случайной величины .

    При решении практических задач часто требуется найти значение x , при котором функция распределения F x (x ) случайной величины x принимает заданное значение p , т.е. требуется решить уравнение F x (x ) = p . Решения такого уравнения (соответствующие значения x ) в теории вероятностей называются квантилями.

    Квантилью x p (p -квантилью, квантилью уровня p ) случайной величины , имеющей функцию распределения F x (x ), называют решение x p уравнения F x (x ) = p , p (0, 1). Для некоторых p уравнение F x (x ) = p может иметь несколько решений, для некоторых - ни одного. Это означает, что для соответствующей случайной величины некоторые квантили определены неоднозначно, а некоторые кванитили не существуют.

    Даны определения Функции распределения случайной величины и Плотности вероятности непрерывной случайной величины. Эти понятия активно используются в статьях о статистике сайта . Рассмотрены примеры вычисления Функции распределения и Плотности вероятности с помощью функций MS EXCEL .

    Введем базовые понятия статистики, без которых невозможно объяснить более сложные понятия.

    Генеральная совокупность и случайная величина

    Пусть у нас имеется генеральная совокупность (population) из N объектов, каждому из которых присуще определенное значение некоторой числовой характеристики Х.

    Примером генеральной совокупности (ГС) может служить совокупность весов однотипных деталей, которые производятся станком.

    Поскольку в математической статистике, любой вывод делается только на основании характеристики Х (абстрагируясь от самих объектов), то с этой точки зрения генеральная совокупность представляет собой N чисел, среди которых, в общем случае, могут быть и одинаковые.

    В нашем примере, ГС - это просто числовой массив значений весов деталей. Х – вес одной из деталей.

    Если из заданной ГС мы выбираем случайным образом один объект, имеющей характеристику Х, то величина Х является случайной величиной . По определению, любая случайная величина имеет функцию распределения , которая обычно обозначается F(x).

    Функция распределения

    Функцией распределения вероятностей случайной величины Х называют функцию F(x), значение которой в точке х равно вероятности события X

    F(x) = P(X

    Поясним на примере нашего станка. Хотя предполагается, что наш станок производит только один тип деталей, но, очевидно, что вес изготовленных деталей будет слегка отличаться друг от друга. Это возможно из-за того, что при изготовлении мог быть использован разный материал, а условия обработки также могли слегка различаться и пр. Пусть самая тяжелая деталь, произведенная станком, весит 200 г, а самая легкая - 190 г. Вероятность того, что случайно выбранная деталь Х будет весить меньше 200 г равна 1. Вероятность того, что будет весить меньше 190 г равна 0. Промежуточные значения определяются формой Функции распределения. Например, если процесс настроен на изготовление деталей весом 195 г, то разумно предположить, что вероятность выбрать деталь легче 195 г равна 0,5.

    Типичный график Функции распределения для непрерывной случайной величины приведен на картинке ниже (фиолетовая кривая, см. файл примера ):

    В справке MS EXCEL Функцию распределения называют Интегральной функцией распределения (Cumulative Distribution Function , CDF ).

    Приведем некоторые свойства Функции распределения:

    • Функция распределения F(x) изменяется в интервале , т.к. ее значения равны вероятностям соответствующих событий (по определению вероятность может быть в пределах от 0 до 1);
    • Функция распределения – неубывающая функция;
    • Вероятность того, что случайная величина приняла значение из некоторого диапазона плотность вероятности равна 1/(0,5-0)=2. А для с параметром лямбда =5, значение плотности вероятности в точке х=0,05 равно 3,894. Но, при этом можно убедиться, что вероятность на любом интервале будет, как обычно, от 0 до 1.

      Напомним, что плотность распределения является производной от функции распределения , т.е. «скоростью» ее изменения: p(x)=(F(x2)-F(x1))/Dx при Dx стремящемся к 0, где Dx=x2-x1. Т.е. тот факт, что плотность распределения >1 означает лишь, что функция распределения растет достаточно быстро (это очевидно на примере ).

      Примечание : Площадь, целиком заключенная под всей кривой, изображающей плотность распределения , равна 1.

      Примечание : Напомним, что функцию распределения F(x) называют в функциях MS EXCEL интегральной функцией распределения . Этот термин присутствует в параметрах функций, например в НОРМ.РАСП (x; среднее; стандартное_откл; интегральная ). Если функция MS EXCEL должна вернуть Функцию распределения, то параметр интегральная , д.б. установлен ИСТИНА. Если требуется вычислить плотность вероятности , то параметр интегральная , д.б. ЛОЖЬ.

      Примечание : Для дискретного распределения вероятность случайной величине принять некое значение также часто называется плотностью вероятности (англ. probability mass function (pmf)). В справке MS EXCEL плотность вероятности может называть даже "функция вероятностной меры" (см. функцию БИНОМ.РАСП() ).

      Вычисление плотности вероятности с использованием функций MS EXCEL

      Понятно, что чтобы вычислить плотность вероятности для определенного значения случайной величины, нужно знать ее распределение.

      Найдем плотность вероятности для N(0;1) при x=2. Для этого необходимо записать формулу =НОРМ.СТ.РАСП(2;ЛОЖЬ) =0,054 или =НОРМ.РАСП(2;0;1;ЛОЖЬ) .

      Напомним, что вероятность того, что непрерывная случайная величина примет конкретное значение x равна 0. Для непрерывной случайной величины Х можно вычислить только вероятность события, что Х примет значение, заключенное в интервале (а; b).

      Вычисление вероятностей с использованием функций MS EXCEL

      1) Найдем вероятность, что случайная величина, распределенная по (см. картинку выше), приняла положительное значение. Согласно свойству Функции распределения вероятность равна F(+∞)-F(0)=1-0,5=0,5.

      НОРМ.СТ.РАСП(9,999E+307;ИСТИНА) -НОРМ.СТ.РАСП(0;ИСТИНА) =1-0,5.
      Вместо +∞ в формулу введено значение 9,999E+307= 9,999*10^307, которое является максимальным числом, которое можно ввести в ячейку MS EXCEL (так сказать, наиболее близкое к +∞).

      2) Найдем вероятность, что случайная величина, распределенная по , приняла отрицательное значение. Согласно определения Функции распределения, вероятность равна F(0)=0,5.

      В MS EXCEL для нахождения этой вероятности используйте формулу =НОРМ.СТ.РАСП(0;ИСТИНА) =0,5.

      3) Найдем вероятность того, что случайная величина, распределенная по стандартному нормальному распределению , примет значение, заключенное в интервале (0; 1). Вероятность равна F(1)-F(0), т.е. из вероятности выбрать Х из интервала (-∞;1) нужно вычесть вероятность выбрать Х из интервала (-∞;0). В MS EXCEL используйте формулу =НОРМ.СТ.РАСП(1;ИСТИНА) - НОРМ.СТ.РАСП(0;ИСТИНА) .

      Все расчеты, приведенные выше, относятся к случайной величине, распределенной по стандартному нормальному закону N(0;1). Понятно, что значения вероятностей зависят от конкретного распределения. В статье функции распределения найти точку, для которой F(х)=0,5, а затем найти абсциссу этой точки. Абсцисса точки =0, т.е. вероятность, того что случайная величина Х примет значение <0, равна 0,5.

      В MS EXCEL используйте формулу =НОРМ.СТ.ОБР(0,5) =0.

      Однозначно вычислить значение случайной величины позволяет свойство монотонности функции распределения.

      Обратная функция распределения вычисляет , которые используются, например, при . Т.е. в нашем случае число 0 является 0,5-квантилем нормального распределения . В файле примера можно вычислить и другой квантиль этого распределения. Например, 0,8-квантиль равен 0,84.

      В англоязычной литературе обратная функция распределения часто называется как Percent Point Function (PPF).

      Примечание : При вычислении квантилей в MS EXCEL используются функции: НОРМ.СТ.ОБР() , ЛОГНОРМ.ОБР() , ХИ2.ОБР(), ГАММА.ОБР() и т.д. Подробнее о распределениях, представленных в MS EXCEL, можно прочитать в статье .

      Определение . Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка.

      Для непрерывной случайной величины вводится понятие функции распределения.

      Определение. Функцией распределения вероятностей случайной величины Х называют функцию F(х), определяющую для каждого значения x вероятность того, что случайная величина Х примет значение меньшее x, то есть:

      F(х) = P(X < x)

      Часто вместо термина «функция распределения» используют термин «интегральная функция распределения».

      Свойства функции распределения:

      1. Значения функции распределения принадлежат отрезку:

      0 ≤ F(х) ≤ 1.

      2. Функция распределения есть неубывающая функция, то есть:

      если x > x ,

      то F(x ) ≥ F(x ).

      3. Вероятность того, что случайная величина примет значение, заключенное в интервале }