Войти
Логопедический портал
  • Княжение ярослава мудрого Значение «Русской Правды»
  • Иван Сусанин: интересные факты Интересные события из жизни ивана сусанина
  • Способы быстрого устного умножения чисел
  • Саги викингов читать. Викинги – люди саги. Жизнь и нравы. Проклятое кольцо Андваринаут
  • “Мне голос был. Он звал утешно…”. Анна Ахматова ~ Мне голос был. Он звал утешно… Цветаева мне голос был он звал утешно
  • Любить свою Родину - значит знать её!
  • Уравнение параболы имеет вид. Что такое парабола. В алгебре оно запишется иначе

    Уравнение параболы имеет вид. Что такое парабола. В алгебре оно запишется иначе

    Урок: как построить параболу или квадратичную функцию?

    ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

    Парабола — это график функции описанный формулой ax 2 +bx+c=0.
    Чтобы построить параболу нужно следовать простому алгоритму действий:

    1) Формула параболы y=ax 2 +bx+c ,
    если а>0 то ветви параболы направленны вверх ,
    а то ветви параболы направлены вниз .
    Свободный член c эта точке пересекается параболы с осью OY;

    2) , ее находят по формуле x=(-b)/2a , найденный x подставляем в уравнение параболы и находим y ;

    3) Нули функции или по другому точки пересечения параболы с осью OX они еще называются корнями уравнения. Чтобы найти корни мы уравнение приравниваем к 0 ax 2 +bx+c=0 ;

    Виды уравнений:

    a) Полное квадратное уравнение имеет вид ax 2 +bx+c=0 и решается по дискриминанту;
    b) Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0:
    ax 2 +bx=0,
    х(ax+b)=0,
    х=0 и ax+b=0;
    c)Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a);

    4) Найти несколько дополнительных точек для построения функции.

    ПРАКТИЧЕСКАЯ ЧАСТЬ

    И так теперь на примере разберем все по действиям:
    Пример №1:
    y=x 2 +4x+3
    c=3 значит парабола пересекает OY в точке х=0 у=3. Ветви параболы смотрят вверх так как а=1 1>0.
    a=1 b=4 c=3 x=(-b)/2a=(-4)/(2*1)=-2 y= (-2) 2 +4*(-2)+3=4-8+3=-1 вершина находится в точке (-2;-1)
    Найдем корни уравнения x 2 +4x+3=0
    По дискриминанту находим корни
    a=1 b=4 c=3
    D=b 2 -4ac=16-12=4
    x=(-b±√(D))/2a
    x 1 =(-4+2)/2=-1
    x 2 =(-4-2)/2=-3

    Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=-2

    х -4 -3 -1 0
    у 3 0 0 3

    Подставляем вместо х в уравнение y=x 2 +4x+3 значения
    y=(-4) 2 +4*(-4)+3=16-16+3=3
    y=(-3) 2 +4*(-3)+3=9-12+3=0
    y=(-1) 2 +4*(-1)+3=1-4+3=0
    y=(0) 2 +4*(0)+3=0-0+3=3
    Видно по значениям функции,что парабола симметрична относительно прямой х=-2

    Пример №2:
    y=-x 2 +4x
    c=0 значит парабола пересекает OY в точке х=0 у=0. Ветви параболы смотрят вниз так как а=-1 -1 Найдем корни уравнения -x 2 +4x=0
    Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0.
    х(-x+4)=0, х=0 и x=4.

    Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=2
    х 0 1 3 4
    у 0 3 3 0
    Подставляем вместо х в уравнение y=-x 2 +4x значения
    y=0 2 +4*0=0
    y=-(1) 2 +4*1=-1+4=3
    y=-(3) 2 +4*3=-9+13=3
    y=-(4) 2 +4*4=-16+16=0
    Видно по значениям функции,что парабола симметрична относительно прямой х=2

    Пример №3
    y=x 2 -4
    c=4 значит парабола пересекает OY в точке х=0 у=4. Ветви параболы смотрят вверх так как а=1 1>0.
    a=1 b=0 c=-4 x=(-b)/2a=0/(2*(1))=0 y=(0) 2 -4=-4 вершина находится в точке (0;-4)
    Найдем корни уравнения x 2 -4=0
    Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a)
    x 2 =4
    x 1 =2
    x 2 =-2

    Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=0
    х -2 -1 1 2
    у 0 -3 -3 0
    Подставляем вместо х в уравнение y= x 2 -4 значения
    y=(-2) 2 -4=4-4=0
    y=(-1) 2 -4=1-4=-3
    y=1 2 -4=1-4=-3
    y=2 2 -4=4-4=0
    Видно по значениям функции,что парабола симметрична относительно прямой х=0

    Подписывайтесь на канал на YOUTUBE , чтобы быть в курсе всех новинок и готовится с нами к экзаменам.

    ОПР 1. Параболой называется геометрическое место точек на плоскости, расстояния от которых до некоторой точки, называемой фокусом, и до некоторой прямой, называемой директрисой, равны.

    Для вывода уравнения параболы введем на плоскости прямоугольную систему координат так, чтобы ось абсцисс проходила через фокус перпендикулярно директрисе, и будем считать ее положительным направлением направление от директрисы к фокусу. Начало координат расположим посередине между фокусом и директрисой. Выведем уравнение параболы в выбранной системе координат.

    Пусть М (х ; у ) – произвольная точка плоскости.

    Обозначим через r расстояние от точки М до фокуса F, пусть r = FM,

    через d – расстояние от точки до директрисы, а через р расстояние от фокуса до директрисы.

    Величину р называют параметром параболы, его геометрический смысл раскрыт далее.

    Точка М будет лежать на данной параболе в том и только в том случае, когда r = d .

    В этом случае имеем

    Уравнение

    y 2 = 2 p x

    называется каноническим уравнением параболы .

    Свойства параболы

    1. Парабола проходит через начало координат, т.к. координаты начала координат удовлетворяют уравнению параболы.

    2. Парабола симметрична относительно оси ОХ, т.к. точки с координатами (x , y ) и (x , − y ) удовлетворяют уравнению параболы.

    3. Если р > 0, то ветви параболы направлены вправо и парабола находится в правой полуплоскости.

    4. Точка О называется вершиной параболы, ось симметрии (ось Ох ) - осью параболы.

    Остальным же читателям предлагаю существенно пополнить свои школьные знания о параболе и гиперболе. Гипербола и парабола – это просто? …Не дождётесь =)

    Гипербола и её каноническое уравнение

    Общая структура изложения материала будет напоминать предыдущий параграф. Начнём с общего понятия гиперболы и задачи на её построение.

    Каноническое уравнение гиперболы имеет вид , где – положительные действительные числа. Обратите внимание, что в отличие от эллипса , здесь не накладывается условие , то есть, значение «а» может быть и меньше значения «бэ».

    Надо сказать, довольно неожиданно… уравнение «школьной» гиперболы и близко не напоминает каноническую запись. Но эта загадка нас ещё подождёт, а пока почешем затылок и вспомним, какими характерными особенностями обладает рассматриваемая кривая? Раскинем на экране своего воображения график функции ….

    У гиперболы две симметричные ветви.

    Неплохой прогресс! Данными свойствами обладает любая гипербола, и сейчас мы с неподдельным восхищением заглянем в декольте этой линии:

    Пример 4

    Построить гиперболу, заданную уравнением

    Решение : на первом шаге приведём данное уравнение к каноническому виду . Пожалуйста, запомните типовой порядок действий. Справа необходимо получить «единицу», поэтому обе части исходного уравнения делим на 20:

    Здесь можно сократить обе дроби, но оптимальнее сделать каждую из них трёхэтажной :

    И только после этого провести сокращение:

    Выделяем квадраты в знаменателях:

    Почему преобразования лучше проводить именно так? Ведь дроби левой части можно сразу сократить и получить . Дело в том, что в рассматриваемом примере немного повезло: число 20 делится и на 4 и на 5. В общем случае такой номер не проходит. Рассмотрим, например, уравнение . Здесь с делимостью всё печальнее и без трёхэтажных дробей уже не обойтись:

    Итак, воспользуемся плодом наших трудов – каноническим уравнением :

    Как построить гиперболу?

    Существует два подхода к построению гиперболы – геометрический и алгебраический.
    С практической точки зрения вычерчивание с помощью циркуля... я бы даже сказал утопично, поэтому гораздо выгоднее вновь привлечь на помощь нехитрые расчёты.

    Целесообразно придерживаться следующего алгоритма, сначала готовый чертёж, потом комментарии:

    На практике часто встречается комбинация поворота на произвольный угол и параллельного переноса гиперболы. Данная ситуация рассматривается на уроке Приведение уравнения линии 2-го порядка к каноническому виду .

    Парабола и её каноническое уравнение

    Свершилось! Она самая. Готовая раскрыть немало тайн. Каноническое уравнение параболы имеет вид , где – действительное число. Нетрудно заметить, что в своём стандартном положении парабола «лежит на боку» и её вершина находится в начале координат. При этом функция задаёт верхнюю ветвь данной линии, а функция – нижнюю ветвь. Очевидно, что парабола симметрична относительно оси . Собственно, чего париться:

    Пример 6

    Построить параболу

    Решение : вершина известна, найдём дополнительные точки. Уравнение определяет верхнюю дугу параболы, уравнение – нижнюю дугу.

    В целях сократить запись вычисления проведём «под одной гребёнкой» :

    Для компактной записи результаты можно было свести в таблицу.

    Перед тем, как выполнить элементарный поточечный чертёж, сформулируем строгое

    определение параболы:

    Параболой называется множество всех точек плоскости, равноудалённых от данной точки и данной прямой , не проходящей через точку .

    Точка называется фокусом параболы, прямая – директрисой (пишется с одной «эс») параболы. Константа «пэ» канонического уравнения называется фокальным параметром , который равен расстоянию от фокуса до директрисы. В данном случае . При этом фокус имеет координаты , а директриса задаётся уравнением .
    В нашем примере :

    Определение параболы понимается ещё проще, чем определения эллипса и гиперболы. Для любой точки параболы длина отрезка (расстояние от фокуса до точки) равна длине перпендикуляра (расстоянию от точки до директрисы):

    Поздравляю! Многие из вас сегодня сделали самое настоящие открытие. Оказывается, гипербола и парабола вовсе не являются графиками «рядовых» функций, а имеют ярко выраженное геометрическое происхождение.

    Очевидно, что при увеличении фокального параметра ветви графика будут «раздаваться» вверх и вниз, бесконечно близко приближаясь к оси . При уменьшении же значения «пэ» они начнут сжиматься и вытягиваться вдоль оси

    Эксцентриситет любой параболы равен единице:

    Поворот и параллельный перенос параболы

    Парабола – одна из самых распространённых линий в математике, и строить её придётся действительно часто. Поэтому, пожалуйста, особенно внимательно отнестись к заключительному параграфу урока, где я разберу типовые варианты расположения данной кривой.

    ! Примечание : как и в случаях с предыдущими кривыми, корректнее говорить о повороте и параллельном переносе координатных осей, но автор ограничится упрощённым вариантом изложения, чтобы у читателя сложились элементарные представления о данных преобразованиях.

    Парабола - это бесконечная кривая, которая состоит из точек, равноудаленых от заданной прямой, называемой директрисой параболы, и заданной точки - фокуса параболы. Парабола является коническим сечением, то есть представляет собой пересечение плоскости и кругового конуса.

    В общем виде математическое уравнение параболы имеет вид: y=ax^2+bx+c, где a не равно нулю, b отражает смещение графика функции по горизонтали относительно начала координат, а c - вертикальное смещение графика функции относительно начала координат. При этом, если a>0, то при построении графика будут направленны вверх, а в случае, если aСвойства параболы

    Парабола - это кривая второго порядка, которая имеет ось симметрии, проходящую через фокус параболы и перпендикулярную директрисе параболы.

    Парабола обладает особым оптическим свойством, заключающемся в фокусировки параллельных относительно оси ее симметрии световых лучей, направленных в параболу, в вершине параболы и расфокусировки пучка света, направленного в вершину параболы, в параллельные световые лучи относительной той же оси.

    Если произвести отражение параболы относительно любой касательной, то образ параболы окажется на ее директрисе. Все параболы подобны между собой, то есть для каждых двух точек A и B одной параболы, найдутся точки A1 и B1, для которых верно утверждение |A1,B1| = |A,B|*k, где k – коэффициент подобия, который в численном значении всегда больше нуля.

    Проявление параболы в жизни

    Некоторые космические тела, такие как кометы или астероиды, проходящие вблизи крупных космических объектов на высокой скорости имеют траекторию движения в форме параболы. Это свойство малых космических тел используется при гравитационных маневрах космических кораблей.

    Для тренировок будущих космонавтов, на земле проводятся специальные полеты самолетов по траектории параболы, чем достигается эффект невесомости в гравитационном поле земли.

    В быту параболы можно встретить в различных осветительных приборах. Это связано с оптическим свойством параболы. Одним из последних способов применения параболы, основанных на ее свойствах фокусировки и расфокусировки световых лучей, стали солнечные батареи, которые все больше входят в сферу энергоснабжения в южных регионах России.

    Установим основные свойства параболы. Рассечем прямой круговой конус с вершиной S плоскостью, параллельной одной из его образующих. В сечении получим параболу. Проведем через ось ST конуса плоскость АSB, перпендикулярную к плоскости (рис. 11). Образующая SА, лежащая в ней, будет параллельна плоскости. Впишем в конус шаровую поверхность, касающуюся конуса по окружности UV и касающуюся плоскости в точке F. Проведем через точку F прямую, параллельную образующей SA. Обозначим точку ее пересечения с образующей SB через P. Точка F называется фокусом параболы, точка Р - ее вершиной, а прямая РF, проходящая через вершину и фокус (и параллельная образующей SA), называется осью параболы. Второй вершины - точки пересечения оси РF с образующей SA у параболы не будет: эта точка «уходит в бесконечность». Назовем директрисой (в переводе значит «направляющая») линию q 1 q 2 пересечения плоскости с плоскостью, в которой лежит окружность UV. Возьмем на параболе произвольную точку М и соединим ее с вершиной конуса S. Прямая МS коснется шара в точке D, лежащей на окружности UV. Соединим точку М с фокусом F и опустим из точки М перпендикуляр МК на директрису. Тогда оказывается, что расстояния произвольной точки М параболы до фокуса (МF) и до директрисы (МК) равны друг другу (основное свойство параболы), т.е. МF=МК.

    Доказательство: МF=MD (как касательные к шару из одной точки). Обозначим угол между любой из образующих конуса и осью ST через ц. Спроектируем отрезки МD и МК на ось ST. Отрезок MD образует проекцию на ось ST, равную МDcosц, так как MD лежит на образующей конуса; отрезок МК образует проекцию на ось ST, равную МКсоsц, так как отрезок МК параллелен образующей SA. (Действительно, директриса q 1 q 1 перпендикулярна плоскости АSB. Следовательно, прямая РF пересекает директрису в точке L под прямым углом. Но прямые МК и РF лежат в одной плоскости, причем МК тоже перпендикулярна директрисе). Проекции обоих отрезков МК и МD на ось ST равны друг другу, так как один их конец - точка М - общий, а два других D и К лежат в плоскости, перпендикулярной оси ST (рис.). Тогда МDcosц= МКсоsц или МD= МК. Следовательно, МF=MK.

    Свойство 1. (Фокальное свойство параболы).

    Расстояние от любой точки параболы до середины главной хорды равно её расстоянию до директрисы.

    Доказательство.

    Точка F - точка пересечения прямой QR и главной хорды. Эта точка лежит на оси симметрии Оу. Действительно, треугольники RNQ и ROF равны, как прямоугольные

    треугольники с раными катетами (NQ=OF, OR=RN). Поэтому какую бы точку N мы не взяли, построенная по ней прямая QR пересечёт главную хорду в её середине F. Теперь ясно, что треугольник FMQ - равнобедренный. Действительно, отрезок MR является одновременно и медианой и высотой этого треугольника. Отсюда следует, что MF=MQ.

    Свойство 2. (Оптическое свойство параболы).

    Всякая касательная к параболе составляет равные углы с фокальным радиусом, проведённым в точку касания, и лучом, прходящим из точки касания и сонаправленным с осью (или, лучи, выходящие из единственного фокуса, отражаясь от параболы, пойдут параллельно оси).

    Доказательство. Для точки N, лежащей на самой параболе справедливо равенство |FN|=|NH|, а для точки N", лежащей во внутренней области параболы, |FN"|<|N"H"|. Если теперь провести биссектрису l угла FМК, то для любой отличной от М точки M" прямой l найдём:

    |FM"|=|M"K"|>|M"K"|, то есть точка M" лежит во внешней области параболы. Итак, вся прямая l, кроме точки М, лежит во внешней области, то есть внутренняя область параболы лежит по одну сторону от l, а это означает, что l - касательная к параболе. Это даёт доказательство оптического свойства параболы: угол 1 равен углу 2, так как l - биссектриса угла FМК.