Войти
Логопедический портал
  • На уроках физической культуры Правила поведения на уроке по физкультуре
  • Царская охота Как все начиналось
  • Общая характеристика элементов IV группы, главной подгруппы периодической системы Д
  • Петр иванович бекетов что открыл
  • Взаимное расположение предметов в пространстве»
  • Решение простых линейных уравнений
  • Сумма углов треугольника. Полные уроки — Гипермаркет знаний. Научная электронная библиотека Обобщение в симплекс теории

    Сумма углов треугольника. Полные уроки — Гипермаркет знаний. Научная электронная библиотека Обобщение в симплекс теории

    Доказательство

    Пусть ABC" - произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC (такая прямая называется прямой Евклида). Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны от прямой BC .Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD . Поэтому сумма углов треугольника при вершинах B и С равна углу ABD .Сумма всех трех углов треугольника равна сумме углов ABD и BAC . Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB , то их сумма равна 180°. Теорема доказана.

    Следствия

    Из теоремы следует, что у любого треугольника два угла острые. Действительно, применяя доказательство от противного , допустим, что у треугольника только один острый угол или вообще нет острых углов. Тогда у этого треугольника есть, по крайней мере, два угла, каждый из которых не меньше 90°. Сумма этих углов не меньше 180°. А это невозможно, так как сумма всех углов треугольника равна 180°. Что и требовалось доказать.

    Обобщение в симплекс теории

    Где -угол между i и j гранями симплекса.

    Примечания

    • На сфере сумма углов треугольника всегда превышает 180°, разница называется сферическим избытком и пропорциональна площади треугольника.
    • В плоскости Лобачевского сумма углов треугольника всегда меньше 180°. Разность также пропорциональна площади треугольника.

    См. также


    Wikimedia Foundation . 2010 .

    • Тейлор
    • Нижний Лебяжий мост

    Смотреть что такое "Теорема о сумме углов треугольника" в других словарях:

      Теорема о сумме углов многоугольника - Свойство многоугольников в евклидовой геометрии: Сумма углов n угольника равна 180°(n 2). Содержание 1 Доказательство 2 Замечание … Википедия

      Теорема Пифагора - Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Содержание 1 … Википедия

      Площадь треугольника

      Пифагора теорема - Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Содержание 1 Формулировки 2 Доказательства … Википедия

      Косинусов теорема - Теорема косинусов обобщение теоремы Пифагора. Квадрат стороны треугольника равен сумме квадратов двух других его сторон без удвоенного произведения этих сторон на косинус угла между ними. Для плоского треугольника со сторонами a,b,c и углом α… … Википедия

      Треугольник - У этого термина существуют и другие значения, см. Треугольник (значения). Треугольник (в евклидовом пространстве) это геометрическая фигура, образованная тремя отрезками, которые соединяют три не лежащие на одной прямой точки. Три точки,… … Википедия

      Признаки равенства треугольников - Стандартные обозначения Треугольник простейший многоугольник, имеющий 3 вершины (угла) и 3 стороны; часть плоскости, ограниченная тремя точками, не лежащими на одной прямой, и тремя отрезками, попарно соединяющими эти точки. Вершины треугольника … Википедия

      Евклид - древнегреческий математик. Работал в Александрии в III в. до н. э. Главный труд «Начала» (15 книг), содержащий основы античной математики элементарной геометрии, теории чисел, общей теории отношений и метода определения площадей и объёмов,… … Энциклопедический словарь

      ЕВКЛИД - (умер между 275 и 270 до н. э.) древнегреческий математик. Сведения о времени и месте его рождения до нас не дошли, однако известно, что Евклид жил в Александрии и расцвет его деятельности приходится на время царствования в Египте Птолемея I… … Большой Энциклопедический словарь

      НЕЕВКЛИДОВА ГЕОМЕТРИЯ - геометрия, сходная с геометрией Евклида в том, что в ней определено движение фигур, но отличающаяся от евклидовой геометрии тем, что один из пяти ее постулатов (второй или пятый) заменен его отрицанием. Отрицание одного из евклидовых постулатов… … Энциклопедия Кольера

    ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА

    НА ТЕМУ:

    «Всегда ли сумма углов треугольника равна 180˚?»

    Выполнил:

    Ученик 7б класса

    МБОУ Инзенская СШ №2

    г. Инза, Ульяновская область

    Малышев Ян

    Научный руководитель:

    Большакова Людмила Юрьевна

    ОГЛАВЛЕНИЕ

    Введение…………………………………………………..3 стр.

    Основная часть……………………………………………4

      поиск информации

      опыты

      вывод

    Заключение………………………………………………..12

    ВВЕДЕНИЕ

    В этом году я начал изучать новый предмет-геометрию. Эта наука изучает свойства геометрических фигур. На одном из уроков мы изучали теорему о сумме углов треугольника. И с помощью доказательства сделали вывод: сумма углов треугольника равна 180˚.

    Я задумался, а есть ли такие треугольники, у которых сумма углов не будет равна 180˚?

    Тогда я поставил перед собой ЦЕЛЬ :

    Узнать, когда сумма углов треугольника не равна 180˚?

    Поставил следующие ЗАДАЧИ :

    Познакомиться с историей возникновения геометрии;

    Познакомиться с геометрией Евклида, Романа, Лобачевского;

    Доказать опытным путем, что сумма углов треугольника может быть не равна 180˚.

    ОСНОВНАЯ ЧАСТЬ

    Геометрия возникла и развивалась в связи с потребностями практической деятельности человека. При строительстве даже самых примитивных сооружений необходимо уметь рассчитывать, сколько материала уйдет на постройку, вычислять расстояния между точками в пространстве и углы между плоскостями. Развитие торговли и мореплавания требовало умений ориентироваться во времени и пространстве.

    Для развития геометрии много сделали ученые Древней Греции. Первые доказательства геометрических фактов связывают с именем Фалеса Милетского.

    Одной из самых известных школ была пифагорейская, названная в честь своего основателя, автора доказательств многих теорем, Пифагора.

    Геометрию, которую изучают в школе, называют Евклидовой, по имени Евклида - древнегреческого ученого.

    Евклид жил в Александрии. Он написал знаменитую книгу «Начала». Последовательность и строгость сделали это произведение источником геометрических знаний во многих странах мира в течении более двух тысячелетий. До недавнего времени почти все школьные учебники были во многом схожи с «Началами».

    Но в 19 веке было показано, что аксиомы Евклида не являются универсальными и верны не во всяких обстоятельствах. Основные открытия геометрической системы, в которой аксиомы Евклида не верны, были сделаны Георгом Риманом и Николаем Лобачевским. О них говорят как о создателях неевклидовой геометрии.

    И вот, опираясь на учения Евклида, Римана и Лобачевского, попробуем ответить на вопрос: всегда ли сумма углов треугольника равна 180˚?

    ОПЫТЫ

    Рассмотрим треугольник с точки зрения геометрии Евклида.

    Для этого возьмём треугольник.

    Закрасим его углы красным, зеленым и синим цветами.

    Проведем прямую линию. Это развернутый угол, он равен 180 ˚.

    Отрежем углы нашего треугольника и приложим их к развернутому углу. Мы видим, что сумма трех углов равна 180˚.

    Одним из этапов развития геометрии стала эллиптическая геометрия Римана. Частным случаем этой эллиптической геометрии является геометрия на сфере. В геометрии Римана сумма углов треугольника больше 180˚.

    Итак, это сфера.

    Внутри этой сферы меридианами и экватором образуется треугольник. Возьмем этот треугольник, закрасим его углы.

    Отрежем их и приложим к прямой. Мы видим, что сумма трех углов больше 180˚.

    В геометрии Лобачевского сумма углов треугольника меньше 180˚.

    Эта геометрия рассматривается на поверхности гиперболического параболоида (это вогнутая поверхность, напоминающая седло).

    Примеры параболоидов можно встретить в архитектуре.


    И даже чипсы «прингл»-пример параболоида.

    Проверим сумму углов на модели гиперболического параболоида.

    На поверхности образуется треугольник.

    Возьмем этот треугольник, закрасим его углы, отрежем их и приложим к прямой. Теперь мы видим, что сумма трех углов меньше 180˚.

    ВЫВОД

    Таким образом, мы доказали, что сумма углов треугольника не всегда равна 180˚.

    Она может быть и больше, и меньше.

    ЗАКЛЮЧЕНИЕ

    В заключение своей работы хочу сказать, что работать над этой темой было интересно. Я узнал много нового для себя и, в дальнейшем, буду с удовольствием изучать эту интересную геометрию.

    ИСТОЧНИКИ ИНФОРМАЦИИ

      ru.wikipedia.org

      e-osnova.ru

      vestishki.ru

      yun.moluch.ru

    (опорный конспект)

    Наглядная геометрия 7 класс. Опорный конспект № 4 Сумма углов треугольника.

    Великий французский ученый XVII века Блез Паскаль в детстве любил возиться с геометрическими фигурами. Он был знаком с транспортиром и умел измерять углы. Юный исследователь заметил, что у всех треугольников сумма трех углов получается одна и та же - 180°. «Как же это доказать? - подумал Паскаль. - Ведь нельзя же проверить сумму углов у всех треугольников - их бесконечное множество». Тогда он отрезал ножницами два уголка треугольника и приложил их к третьему углу. Получился развернутый угол, который, как известно, равен 180°. Это было его первое собственное открытие. Дальнейшая судьба мальчика была уже предопределена.

    В этой теме вы познакомитесь с пятью признаками равенства прямоугольных треугольников и, пожалуй, с самым популярным свойством прямоугольного треугольника с углом 30°. Оно звучит так: катет, лежащий против угла 30°, равен половине гипотенузы. Разделив равносторонний треугольник высотой, мы сразу получим доказательство этого свойства.

    ТЕОРЕМА . Сумма углов треугольника равна 180°. Для доказательства проведем через вершину прямую, параллельную основанию. Темные углы равны и серые углы равны как накрест лежащие при параллельных прямых. Темный угол, серый угол и угол при вершине образуют развернутый угол, их сумма 180°. Из теоремы следует, что углы равностороннего треугольника равны по 60° и что сумма острых углов прямоугольного треугольника равна 90°.

    Внешним углом треугольника называется угол, смежный с углом треугольника. Поэтому иногда углы самого треугольника называют внутренними углами.

    ТЕОРЕМА о внешнем угле треугольника . Внешний угол треугольника равен сумме двух внутренних, не смежных с ним. Действительно, внешний угол и два внутренних, не смежных с ним, дополняют закрашенный угол до 180°. Из теоремы следует, что внешний угол больше любого внутреннего, не смежного с ним.

    ТЕОРЕМА о соотношениях между сторонами и углами треугольника . В треугольнике против большей стороны лежит больший угол, а против большего угла лежит большая сторона. Отсюда следует: 1) Катет меньше гипотенузы. 2) Перпендикуляр меньше наклонной.

    Расстояние от точки до прямой . Так как перпендикуляр меньше любой наклонной, проведенной из той же точки, то его длина принимается за расстояние от точки до прямой.

    Неравенство треугольника . Длина любой стороны треугольника меньше суммы двух других его сторон, т. е. а < b + с , b < а + с , с < а + b . Следствие . Длина ломаной больше отрезка, соединяющего ее концы.

    ПРИЗНАКИ РАВЕНСТВА
    ПРЯМОУГОЛЬНЫХ ТРЕУГОЛЬНИКОВ

    По двум катетам . Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого треугольника, то такие треугольники равны.

    По катету и прилежащему острому углу . Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого треугольника, то такие треугольники равны.

    По катету и противолежащему острому углу . Если катет и противолежащий ему острый угол одного прямоугольного треугольника соответственно равны катету и противолежащему ему острому углу другого треугольника, то такие треугольники равны.

    По гипотенузе и острому углу . Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого треугольника, то такие треугольники равны.

    Доказательство этих признаков сразу сводится к одному из признаков равенства треугольников.

    По катету и гипотенузе . Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны.

    Доказательство. Приложим треугольники равными катетами. Получим равнобедренный треугольник. Его высота, проведенная из вершины, будет и медианой. Тогда у треугольников равны и вторые катеты, и треугольники равны по трем сторонам.

    ТЕОРЕМА о свойстве катета, лежащего против угла 30° . Катет, лежащий против угла 30°, равен половине гипотенузы. Доказывается достроением треугольника до равностороннего.

    ТЕОРЕМА о свойстве точек биссектрисы угла . Любая точка биссектрисы угла равноудалена от его сторон. Если точка равноудалена от сторон угла, то она лежит на биссектрисе угла. Доказывается проведением двух перпендикуляров к сторонам угла и рассмотрением прямоугольных треугольников.

    Вторая замечательная точка . Биссектрисы треугольника пересекаются в одной точке.

    Расстояние между параллельными прямыми . ТЕОРЕМА . Все точки каждой из двух параллельных прямых находятся на равном расстоянии от другой прямой. Из теоремы следует определение расстояния между параллельными прямыми.

    Определение . Расстоянием между двумя параллельными прямыми называется расстояние от любой точки одной из параллельных прямых до другой прямой.

    Подробные доказательства теорем






    Это опорный конспект № 4 по геометрии в 7 классе . Выберите дальнейшие действия:

    Сумма углов треугольника - важная, но достаточно простая тема, которую проходят в 7 классе на геометрии. Тема состоит из теоремы, короткого доказательства и нескольких логичных следствий. Знание этой темы помогает в решении геометрических задач при последующем изучении предмета.

    Теорема - чему равны сложенные между собой углы произвольного треугольника?

    Теорема гласит - если взять любой треугольник вне зависимости от его вида, сумма всех углов неизменно составит 180 градусов. Доказывается это следующим образом:

    • для примера берут треугольник АВС, через расположенную на вершине точку В проводят прямую линию и обозначают ее, как «а», прямая «а» при этом строго параллельна стороне АС;
    • между прямой «а» и сторонами АВ и ВС обозначают углы, маркируя их цифрами 1 и 2;
    • угол 1 признают равным углу А, а угол 2 - равным углу С, поскольку эти углы считаются накрест лежащими;
    • таким образом, сумма между углами 1, 2 и 3 (который обозначается на месте угла В) признается равной развернутому углу с вершиной В - и составляет 180 градусов.

    Если сумма углов, обозначенных цифрами, составляет 180 градусов, то и сумма углов А, В и С признается равной 180 градусам. Это правило верно для любого треугольника.

    Что следует из геометрической теоремы

    Принято выделять несколько следствий из приведенной теоремы.

    • Если в задаче рассматривается треугольник с прямым углом, то один из его углов будет по умолчанию равен 90 градусам, а сумма острых углов также составит 90 градусов.
    • Если речь идет о прямоугольном равнобедренном треугольнике, то его острые углы, в сумме составляющие 90 градусов, по отдельности будут равны 45 градусам.
    • Равносторонний треугольник состоит из трех равных углов, соответственно, каждый из них будет равен 60 градусам, а в сумме они составят 180 градусов.
    • Внешний угол любого треугольника будет равняться сумме между двумя внутренними углами, не прилегающими к нему.

    Можно вывести следующее правило - в любом из треугольников есть как минимум два острых угла. В некоторых случаях треугольник состоит из трех острых углов, а если их только два, то третий угол будет тупым либо прямым.

    Сумма внутренних углов треугольника равна 180 0 . Это одна из основополагающих аксиом геометрии Эвклида. Именно эту геометрию изучают школьники. Геометрию определяют наукой, изучающей пространственные формы реального мира.

    Что побудило древних греков разработать геометрию? Потребность измерять поля, луга - участки земной поверхности. При этом древние греки приняли, что поверхность Земли горизонтальная, плоская. С учетом этого допущения и создавались аксиомы Эвклида, в том числе и о сумме внутренних углов треугольника в 180 0 .

    Под аксиомой понимается положение, не требующее доказательства. Как это нужно понимать? Высказывается пожелание, устраивающее человека, и далее оно подтверждается иллюстрациями. Но все, что не доказано - вымысел, то, чего нет в реальности.

    Принимая земную поверхность горизонтальной, древние греки автоматически приняли форму Земли плоской, но она другая - сферическая. Горизонтальных плоскостей и прямых линий в природе вообще нет, потому что гравитация искривляет пространство. Прямые линии и горизонтальные плоскости имеются только в мозгу головы человека.

    Поэтому, геометрия Эвклида, объясняющая пространственные формы вымышленного мира, является симулякром - копией, не имеющей оригинала.

    Одна из аксиом Эвклида гласит, что сумма внутренних углов треугольника равна 180 0 . На самом деле в реальном искривленном пространстве, или на сферической поверхности Земли, сумма внутренних углов треугольника всегда больше 180 0 .

    Рассуждаем так. Любой меридиан на глобусе пересекается с экватором под углом 90 0 . Чтобы получить треугольник, нужно от меридиана отодвинуть другой меридиан. Сумма углов треугольника между меридианами и стороной экватора составит 180 0 . Но еще останется угол у полюса. В итоге сумма всех углов и составит больше 180 0 .

    Если на полюсе стороны пересекутся под углом 90 0 , то сумма внутренних углов такого треугольника будет 270 0 . Два меридиана, пересекающиеся с экватором под прямым углом в этом треугольнике, будет параллельными друг другу, а на полюсе, пересекающиеся друг с другом под углом 90 0 , станут перпендикулярами. Получается, две параллельные линии на одной плоскости не только пересекаются, но могу на полюсе быть перпендикулярами.

    Конечно, стороны такого треугольника будут не прямыми линиями, а выпуклыми, повторяющими сферическую форму земного шара. Но, именно такой реальный мир пространства.

    Геометрию реального пространства с учетом его кривизны в середине XIX в. разработал немецкий математик Б. Риман (1820-1866). Но об этом школьникам не говорят.

    Итак, эвклидова геометрия, принимающая форму Земли плоской с горизонтальной поверхностью, чего на самом деле нет, представляет собой симулякр. Ноотик - геометрия Римана, учитывающая кривизну пространства. Сумма внутренних углов треугольника в ней больше 180 0 .