Войти
Логопедический портал
  • «Сказочные элементы в поэме А
  • Русско-турецкая война (1768–1774)
  • Черная сотня Крах черносотенного движения
  • Кто такой был царевич Дмитрий?
  • Хемингуэй прощай оружие краткое содержание по главам
  • О чем рассказывает роман "айвенго" Айвенго краткое изложение
  • Способы определения координат центра тяжести. Как вычислить центр тяжести плоской ограниченной фигурыс помощью двойного интеграла? Определение центра тяжести тел сложной формы

    Способы определения координат центра тяжести. Как вычислить центр тяжести плоской ограниченной фигурыс помощью двойного интеграла? Определение центра тяжести тел сложной формы

    Автор : Возьмем тело произвольной формы. Можно ли подвесить его на нити так, чтобы оно после подвешивания сохранило свое положение (т.е. не стало поворачиваться) при любой начальной ориентации (рис. 27.1)?

    Иными словами, существует ли такая точка, относительно которой сумма моментов сил тяжести, действующих на различные части тела, была бы равна нулю при любой ориентации тела в пространстве?

    Читатель : По-моему, да. Такая точка называется центром тяжести тела.

    Доказательство. Для простоты рассмотрим тело в виде плоской пластины произвольной формы произвольным образом ориентированное в пространстве (рис. 27.2). Возьмем систему координат х 0у с началом в центре масс – точке С , тогда х С = 0, у С = 0.

    Представим это тело в виде совокупности большого числа точечных масс m i , положение каждой из которых задается радиусом-вектором .

    По определению центра масс , а координата х С = .

    Так как в принятой нами системе координат х С = 0, то . Умножим это равенство на g и получим

    Как видно из рис. 27.2, |x i | – это плечо силы . Причем если х i > 0, то момент силы M i > 0, а если х j < 0, то M j < 0, поэтому с учетом знака можно утверждать, что для любого x i момент силы будет равен M i = m i gx i . Тогда равенство (1) эквивалентно равенству , где M i – момент силы тяжести . А это значит, что при произвольной ориентации тела сумма моментов сил тяжести, действующих на тело, будет равна нулю относительно его центра масс.

    Чтобы рассматриваемое нами тело находилось в равновесии, к нему необходимо приложить в точке С силу Т = mg , направленную вертикально вверх. Момент этой силы относительно точки С равен нулю.

    Поскольку наши рассуждения никак не зависели от того, как именно ориентировано тело в пространстве, мы доказали, что центр тяжести совпадает с центром масс, что и требовалось доказать.

    Задача 27.1. Найти центр тяжести невесомого стержня длины l , на концах которого укреплены две точечные массы т 1 и т 2 .

    т 1 т 2 l Решение. Будем искать не центр тяжести, а центр масс (так как это одно и то же). Введем ось х (рис. 27.3). Рис. 27.3
    х С = ?

    Ответ : на расстоянии от массы т 1 .

    СТОП! Решите самостоятельно: В1–В3.

    Утверждение 1. Если однородное плоское тело имеет ось симметрии, центр тяжести находится на этой оси.

    Действительно, для всякой точечной массы m i , расположенной справа от оси симметрии, найдется такая же точечная масса , расположенная симметрично относительно первой (рис. 27.4). При этом сумма моментов сил .

    Поскольку все тело можно представить разбитым на подобные пары точек, то суммарный момент сил тяжести относительно любой точки, лежащей на оси симметрии равен нулю, а значит, на этой оси находится и центр тяжести тела. Отсюда следует важный вывод: если тело имеет несколько осей симметрии, то центр тяжести лежит на пересечении этих осей (рис. 27.5).

    Рис. 27.5

    Утверждение 2 . Если два тела массами т 1 и т 2 соединены в одно, то центр тяжести такого тела будет лежать на отрезке прямой, соединяющей центры тяжести первого и второго тела (рис. 27.6).

    Рис. 27.6 Рис. 27.7

    Доказательство. Расположим составное тело так, чтобы отрезок, соединяющий центры тяжести тел был вертикальным. Тогда сумма моментов сил тяжести первого тела относительно точки С 1 равна нулю, и сумма моментов сил тяжести второго тела относительно точки С 2 равна нулю (рис. 27.7).

    Заметим, что плечо силы тяжести любой точечной массы т i одно и то же относительно любой точки, лежащей на отрезке С 1 С 2 , а значит, и момент силы тяжести относительно любой точки, лежащей на отрезке С 1 С 2 , один и тот же. Следовательно, сил тяжести всего тела равен нулю относительно любой точки отрезка С 1 С 2 . Таким образом, центр тяжести составного тела лежит на отрезке С 1 С 2 .

    Из утверждения 2 следует важный практический вывод, который четко сформулирован в виде инструкции.

    Инструкция,

    как искать центр тяжести твердого тела, если его можно разбить

    на части, положения центров тяжести каждой из которых известно

    1. Следует заменить каждую часть массой, расположенной в центре тяжести этой части.

    2. Найти центр масс (а это то же самое, что и центр тяжести) полученной системы точечных масс, выбрав удобную систему координат х 0у , по формулам:

    В самом деле, расположим составное тело так, чтобы отрезок С 1 С 2 был горизонтальным, и подвесим его на нитях в точках С 1 и С 2 (рис. 27.8,а ). Ясно, что тело будет находиться в равновесии. И это равновесие не нарушится, если мы заменим каждое тело точечными массами т 1 и т 2 (рис. 27.8,б ).

    Рис. 27.8

    СТОП! Решите самостоятельно: С3.

    Задача 27.2. В двух вершинах равностороннего треугольника помещены шарики массы т каждый. В третьей вершине помещен шарик массы 2т (рис. 27.9,а ). Сторона треугольника а . Определить центр тяжести этой системы.

    т 2т а Рис. 27.9
    х С = ? у С = ?

    Решение . Введем систему координат х 0у (рис. 27.9,б ). Тогда

    ,

    .

    Ответ : х С = а /2; ; центр тяжести лежит на половине высоты АD .

    Исходя из полученных выше общих формул, можно указать конкретные способы определения координат центров тяжести тел.

    1. Если однородное тело имеет плоскость, ось или центр симметрии, то его центр тяжести лежит соответственно или в плоскости симметрии, или на оси симметрии, или в центре симметрии.

    Допустим, например, что однородное тело имеет плоскость симметрии. Тогда этой плоскостью оно разбивается на две такие части, веса которых и равны друг другу, а центры тяжести находятся на одинаковых расстояниях от плоскости симметрии. Следовательно, центр тяжести тела как точка, через которую проходит равнодействующая двух равных и параллельных сил будет действительно лежать в плоскости симметрии. Аналогичный результат получается и в случаях, когда тело имеет ось или центр симметрии.

    Из свойств симметрии следует, что центр тяжести однородного круглого кольца, круглой или прямоугольной пластины, прямоугольного параллелепипеда, шара и других однородных тел, имеющих центр симметрии, лежит в геометрическом центре (центре симметрии) этих тел.

    2. Разбиение. Если тело можно разбить на конечное число таких частей, для каждой из которых положение центра тяжести известно, то координаты центра тяжести всего тела можно непосредственно вычислить по формулам (59) - (62). При этом число слагаемых в каждой из сумм будет равно числу частей, на которые разбито тело.

    Задача 45. Определить координаты центра тяжести однородной пластины, изображенной на рис. 106. Все размеры даны в сантиметрах.

    Решение. Проводим оси х, у и разбиваем пластину на три прямоугольника (линии разреза показаны на рис. 106). Вычисляем координаты центров тяжести каждого из прямоугольников и их площади (см. таблицу).

    Площадь всей пластины

    Подставляя вычисленные величины в формулы (61), получаем:

    Найденное положение центра тяжести С показано на чертеже; точка С оказалась вне пластины.

    3. Дополнение. Этот способ является частным случаем способа разбиения. Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известныу

    Задача 46. Определить положение центра тяжести круглой пластины радиуса R с вырезом радиуса (рис. 107). Расстояние

    Решение. Центр тяжести пластины лежит на линии так как эта линия является осью симметрии. Проводим координатные оси. Для нахождения координаты дополняем площадь пластины до полного круга (часть 1), а затем вычитаем из полученной площади площадь вырезанного круга (часть 2). При этом площадь части 2, как вычитаемая, должна браться со знаком минус. Тогда

    Подставляя найденные значения в формулы (61), получаем:

    Найденный центр тяжести С, как виднм, лежнт левее точки

    4. Интегрирование. Если тело нельзя разбить на несколько конечных частей, положения центров тяжести которых известны, то тело разбивают сначала на произвольные малые объемы для которых формулы (60) принимают вид

    где - координаты некоторой точки, лежащей внутри объема Затем в равенствах (63) переходят к пределу, устремляя все к нулю, т. е. стягивая эти объемы в точки. Тогда стоящие в равенствах суммы обращаются в интегралы, распространенные на весь объем тела, и формулы (63) дают в пределе:

    Аналогично для координат центров тяжести площадей и линий получаем в пределе из формул (61) и (62):

    Пример применения этих формул к определению координат центра тяжести рассмотрен в следующем параграфе.

    5. Экспериментальный способ. Центры тяжести неоднородных тел сложной конфигурации (самолет, паровоз и т. п.) можно определять экспериментально. Один из возможных экспериментальных методов (метод подвешивания) состоит в том, что тело подвешивают на нити или тросе за различные его точки. Направление нити, на которой подвешено тело, будет каждый раз давать направление силы тяжести. Точка пересечения этих направлений определяет центр тяжести тела. Другим возможным способом экспериментального определения центра тяжести является метод взвешивания. Идея этого метода ясна из рассмотренного ниже примера.

    Центром тяжести твердого тела называется геометрическая точка, жестко связанная с этим телом, и являющаяся центром параллельных сил тяжести, приложенных к отдельным элементарным частицам тела (рисунок 1.6).

    Радиус-вектор этой точки

    Рисунок 1.6

    Для однородного тела положение центра тяжести тела не зависит от материала, а определяется геометрической формой тела.

    Если удельный вес однородного тела γ , вес элементарной частицы тела

    P k = γΔV k (P = γV ) подставить в формулу для определения r C , имеем

    Откуда, проецируя на оси и переходя к пределу, получаем координаты центра тяжести однородного объема

    Аналогично для координат центра тяжести однородной поверхности площадью S (рисунок 1.7, а)

    Рисунок 1.7

    Для координат центра тяжести однородной линии длиной L (рисунок 1.7, б)

    Способы определения координат центра тяжести

    Исходя из полученных ранее общих формул, можно указать способы определения координат центров тяжести твердых тел:

    1 Аналитический (путем интегрирования).

    2 Метод симметрии . Если тело имеет плоскость, ось или центр симметрии, то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.

    3 Экспериментальный (метод подвешивания тела).

    4 Разбиение . Тело разбивается на конечное число частей, для каждой из которых положение центра тяжести C и площадь S известны. Например, проекцию тела на плоскость xOy (рисунок 1.8) можно представить в виде двух плоских фигур с площадями S 1 и S 2 (S = S 1 + S 2 ). Центры тяжести этих фигур находятся в точках C 1 (x 1 , y 1 ) и C 2 (x 2 , y 2 ) . Тогда координаты центра тяжести тела равны

    Рисунок 1.8

    5Дополнение (метод отрицательных площадей или объемов). Частный случай способа разбиения. Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны. Например, необходимо найти координаты центра тяжести плоской фигуры (рисунок 1.9):

    Рисунок 1.9

    Центры тяжести простейших фигур

    Рисунок 1.10

    1 Треугольник

    Центр тяжести площади треугольник совпадает с точкой пересечения его медиан (рисунок 1.10, а).

    DM = MB , CM = (1/3)AM .

    2 Дуга окружности

    Дуга имеет ось симметрии (рисунок 1.10, б). Центр тяжести лежит на этой оси, т.е. y C = 0 .

    dl – элемент дуги, dl = Rdφ , R – радиус окружности, x = Rcosφ , L = 2αR ,

    Следовательно:

    x C = R(sinα/α) .

    3 Круговой сектор

    Сектор радиуса R с центральным углом 2α имеет ось симметрии Ox , на которой находится центр тяжести (рисунок 1.10, в).

    Разбиваем сектор на элементарные секторы, которые можно считать треугольниками. Центры тяжести элементарных секторов располагаются на дуге окружности радиуса (2/3)R .

    Центр тяжести сектора совпадает с центром тяжести дуги AB :

    14. Способы задания движения точки.

    При векторном способе задания движения положение точки определяется радиус-вектором, проведенным из неподвижной точки в выбранной системе отсчета.

    При координатном способе задания движения задаются координаты точки как функции времени:

    Это параметрические уравнения траектории движущейся точки, в которых роль параметра играет время t . Чтобы записать ее уравнение в явной форме, надо исключить из них t .

    При естественном способе задания движения задаются траектория точки, начало отсчета на траектории с указанием положительного направления отсчета, закон изменения дуговой координаты: s=s(t) . Этим способом удобно пользоваться, если траектория точки заранее известна.

    15. 1.2 Скорость точки

    Рассмотрим перемещение точки за малый промежуток времени Δt :

    средняя скорость точки за промежуток времени Dt . Скорость точки в данный момент времени

    Скорость точки – это кинематическая мера ее движения, равная производной по времени от радиус-вектора этой точки в рассматриваемой системе отсчета. Вектор скорости направлен по касательной к траектории точки в сторону движения.

    Центр тяжести - точка, через которую проходит линия действия равнодействующей элементарных сил тяжести. Он обладает свойством центра параллельных сил (Е. М. Никитин , § 42). Поэтому формулы для определения положения центра тяжести различных тел имеют вид:
    x c = (∑ G i x i) / ∑ G i ;
    (1) y c = (∑ G i y i) / ∑ G i ;
    z c = (∑ G i z i) / ∑ G i .

    Если тело, центр тяжести которого нужно определить, можно отождествить с фигурой, составленной из линий (например, замкнутый или незамкнутый контур, изготовленный из проволоки, как на рис. 173), то вес G i каждого отрезка l i можно представить в виде произведения
    G i = l i d,
    где d - постоянный для всей фигуры вес единицы длины материала.

    После подстановки в формулы (1) вместо G i их значений l i d постоянный множитель d в каждом слагаемом числителя и знаменателя можно вынести за скобки (за знак суммы) и сократить. Таким образом, формулы для определения координат центра тяжести фигуры, составленной из отрезков линий , примут вид:
    x c = (∑ l i x i) / ∑ l i ;
    (2) y c = (∑ l i y i) / ∑ l i ;
    z c = (∑ l i z i) / ∑ l i .

    Если тело имеет вид фигуры, составленной из расположенных различным образом плоскостей или кривых поверхностей (рис. 174), то вес каждой плоскости (поверхности) можно представить так:
    G i = F i p,
    где F i - площади каждой поверхности, а p - вес единицы площади фигуры.

    После подстановки этого значения G i в формулы (1) получаем формулы координат центра тяжести фигуры, составленной из площадей :
    x c = (∑ F i x i) / ∑ F i ;
    (3) y c = (∑ F i y i) / ∑ F i ;
    z c = (∑ F i z i) / ∑ F i .

    Если же однородное тело можно разделить на простые части определенной геометрической формы (рис. 175), то вес каждой части
    G i = V i γ,
    где V i - объем каждой части, а γ - вес единицы объема тела.

    После подстановки значений G i в формулы (1) получаем формулы для определения координат центра тяжести тела, составленного из однородных объемов :
    x c = (∑ V i x i) / ∑ V i ;
    (4) y c = (∑ V i y i) / ∑ V i ;
    z c = (∑ V i z i) / ∑ V i .


    При решении некоторых задач на определение положения центра тяжести тел иногда необходимо знать, где расположен центр тяжести дуги окружности, кругового сектора или треугольника.

    Если известен радиус дуги r и центральный угол 2α, стягиваемый дугой и выраженный в радианах, то положение центра тяжести C (рис. 176, а) относительно центра дуги O определится формулой:
    (5) x c = (r sin α)/α.

    Если же задана хорда AB=b дуги, то в формуле (5) можно произвести замену
    sin α = b/(2r)
    и тогда
    (5а) x c = b/(2α).

    В частном случае для полуокружности обе формулы примут вид (рис. 176, б):
    (5б) x c = OC = 2r/π = d/π.

    Положение центра тяжести кругового сектора, если задан его радиус r (рис. 176, в), определяется при помощи формулы:
    (6) x c = (2r sin α)/(3α).

    Если же задана хорда сектора, то:
    (6а) x c = b/(3α).

    В частном случае для полукруга обе последние формулы примут вид (рис. 176, г)
    (6б) x c = OC = 4r/(3π) = 2d/(3π).

    Центр тяжести площади любого треугольника расположен от любой стороны на расстоянии, равном одной трети соответствующей высоты.

    У прямоугольного треугольника центр тяжести находится на пересечении перпендикуляров, восставленных к катетам из точек, расположенных на расстоянии одной трети длины катетов, считая от вершины прямого угла (рис. 177).

    При решении задач на определение положения центра тяжести любого однородного тела, составленного либо из тонких стержней (линий), либо из пластинок (площадей), либо из объемов, целесообразно придерживаться следующего порядка:

    1) выполнить рисунок тела, положение центра тяжести которого нужно определить. Так как все размеры тела обычно известны, при этом следует соблюдать масштаб;

    2) разбить тело на составные части (отрезки линий или площади, или объемы), положение центров тяжести которых определяется исходя из размеров тела;

    3) определить или длины, или площади, или объемы составных частей;

    4) выбрать расположение осей координат;

    5) определить координаты центров тяжести составных частей;

    6) найденные значения длин или площадей, или объемов отдельных частей, а также координат их центров тяжести подставить в соответствующие формулы и вычислить координаты центра тяжести всего тела;

    7) по найденным координатам указать на рисунке положение центра тяжести тела.

    § 23. Определение положения центра тяжести тела, составленного из тонких однородных стержней

    § 24. Определение положения центра тяжести фигур, составленных из пластинок

    В последней задаче, а также в задачах, приведенных в предыдущем параграфе, расчленение фигур на составные части не вызывает особых затруднений. Но иногда фигура имеет такой вид, который позволяет разделить ее на составные части несколькими способами, например тонкую пластинку прямоугольной формы с треугольным вырезом (рис. 183). При определении положения центра тяжести такой пластинки ее площадь можно разделить на четыре прямоугольника (1, 2, 3 и 4) и один прямоугольный треугольник 5 - несколькими способами. Два варианта показаны на рис. 183, а и б.

    Наиболее рациональным является тот способ деления фигуры на составные части, при котором образуется наименьшее их число. Если в фигуре есть вырезы, то их можно также включать в число составных частей фигуры, но площадь вырезанной части считать отрицательной. Поэтому такое деление получило название способа отрицательных площадей.

    Пластинка на рис. 183, в делится при помощи этого способа всего на две части: прямоугольник 1 с площадью всей пластинки, как будто она целая, и треугольник 2 с площадью, которую считаем отрицательной.

    § 26. Определение положения центра тяжести тела, составленного из частей, имеющих простую геометрическую форму

    Чтобы решать задачи на определение положения центра тяжести тела, составленного из частей, имеющих простую геометрическую форму, необходимо иметь навыки определения координат центра тяжести фигур, составленных из линий или площадей.

    Определение центра тяжести произвольного тела путем последовательного сложения сил, действующих на отдельные его части,- трудная задача; она облегчается только для тел сравнительно простой формы.

    Пусть тело состоит только из двух грузов массы и , соединенных стрежнем (рис. 125). Если масса стержня мала по сравнению с массами и , то ею можно пренебречь. На каждую из масс действуют силы тяжести, равные соответственно и ; обе они направлены вертикально вниз, т. е. параллельно друг другу. Как мы знаем, равнодействующая двух параллельных сил приложена в точке , которая определяется из условия

    Рис. 125. Определение центра тяжести тела, состоящего из двух грузов

    Следовательно, центр тяжести делит расстояние между двумя грузами в отношении, обратном отношению их масс. Если это тело подвесить в точке , оно останется в равновесии.

    Так как две равные массы имеют общий центр тяжести в точке, делящей пополам расстояние между этими массами, то сразу ясно, что, например, центр тяжести однородного стержня лежит в середине стержня (рис. 126).

    Поскольку любой диаметр однородного круглого диска делит его на две совершенно одинаковые симметричные части (рис. 127), то центр тяжести должен лежать на каждом диаметре диска, т. е. в точке пересечения диаметров - в геометрическом центре диска . Рассуждая сходным образом, можно найти, что центр тяжести однородного шара лежит в его геометрическом центре, центр тяжести однородного прямоугольного параллелепипеда лежит на пересечении его диагоналей и т. д. Центр тяжести обруча или кольца лежит в его центре. Последний пример показывает, что центр тяжести тела может лежать вне тела.

    Рис. 126. Центр тяжести однородного стержня лежит в его середине

    Рис. 127. Центр однородного диска лежит в его геометрическом центре

    Если тело имеет неправильную форму или если оно неоднородно (например, в нем есть пустоты), то расчет положения центра тяжести часто затруднителен и это положение удобнее найти посредством опыта. Пусть, например, требуется найти центр тяжести куска фанеры. Подвесим его на нити (рис. 128). Очевидно, в положении равновесия центр тяжести тела должен лежать на продолжении нити, иначе сила тяжести будет иметь момент относительно точки подвеса, который начал бы вращать тело. Поэтому, проведя на нашем куске фанеры прямую, представляющую продолжение нити, можем утверждать, что центр тяжести лежит на этой прямой.

    Действительно, подвешивая тело в разных точках и проводя вертикальные прямые, мы убедимся, что все они пересекутся в одной точке. Эта точка и есть центр тяжести тела (так как он должен лежать одновременно на всех таких прямых). Подобным образом можно определить положение центра тяжести не только плоской фигуры, но и более сложного тела. Положение центра тяжести самолета определяют, вкатывая его колесами на платформы весов. Равнодействующая сил веса, приходящихся на каждое колесо, будет направлена по вертикали, и найти линию, по которой она действует, можно по закону сложения параллельных сил.

    Рис. 128. Точка пересечения вертикальных линий, проведенных через точки подвеса и есть центр тяжести тела

    При изменении масс отдельных частей тела или при изменении формы тела положение центра тяжести меняется. Так, центр тяжести самолета перемещается при расходовании горючего из баков, при загрузке багажа и т. п. Для наглядного опыта, иллюстрирующего перемещение центра тяжести при изменении формы тела, удобно взять два одинаковых бруска, соединенных шарниром (рис. 129). В том случае, когда бруски образуют продолжение один другого, центр тяжести лежит на оси брусков. Если бруски согнуть в шарнире, то центр тяжести оказывается вне брусков, на биссектрисе угла, который они образуют. Если на один из брусков надеть дополнительный груз, то центр тяжести переместится в сторону этого груза.