Войти
Логопедический портал
  • Линейная зависимость системы векторов
  • Свен Нурдквист — Рождественская каша: Сказка Другие книги схожей тематики
  • Реферат: Химическая кинетика и равновесие
  • Исследовательская работа по истории "династия романовых" Начало правления романовых презентация
  • Дополнительная образовательная программа "школа будущего ученика" Занятия проводятся блоками в школе будущего ученика
  • Конспект нод по обучению грамоте в подготовительной группе Нод по обучению грамоте в подготовительной группе фгос
  • Что нужно чтобы найти центр тяжести тела. Определение центра тяжести плоских фигур. Способы определения координат центров тяжести тел

    Что нужно чтобы найти центр тяжести тела. Определение центра тяжести плоских фигур. Способы определения координат центров тяжести тел

    6.1. Общие сведения

    Центр параллельных сил
    Рассмотрим две параллельные, направленные в одну сторону силы , и , приложенные к телу в точках А 1 и А 2 (рис.6.1). Эта система сил имеет равнодействующую , линия действия которой проходит через некоторую точку С . Положение точки С можно найти с помощью теоремы Вариньона:

    Если повернуть силы и около точек А 1 и А 2 в одну сторону и на один и тот же угол, то получим новую систему параллельных сал, имеющих те же модули. При этом их равнодействующая будет также проходить через точку С . Такая точка называется центром параллельных сил.
    Рассмотрим систему параллельных и одинаково направленных сил , приложенных к твердому телу в точках . Эта система имеет равнодействующую .
    Если каждую силу системы повернуть около точек их приложения в одну и ту же сторону и на один и тот же угол, то получатся новые системы одинаково направленных параллельных сил с теми же модулями и точками приложения. Равнодействующая таких систем будет иметь тот же модуль R , но всякий раз другое направление. Сложив силы F 1 и F 2 найдем что их равнодействующая R 1 , которая всегда будет проходить через точку С 1 , положение которой определяется равенством . Сложив далее R 1 и F 3 , найдем их равнодействующую, которая всегда будет проходить через точку С 2 , лежащую на прямой А 3 С 2 . Доведя процесс сложения сил до конца придем к выводу, что равнодействующая всех сил действительно всегда будет проходить через одну и ту же точку С , положение которой по отношению к точкам будет неизменным.
    Точка С , через которую проходит линия действия равнодействующей системы параллельных сил при любых поворотах этих сил около точек их приложения в одну и ту же сторону на один и тот же угол называется центром параллельных сил (рис. 6.2).


    Рис.6.2

    Определим координаты центра параллельных сил. Поскольку положение точки С по отношению к телу является неизменным, то ее координаты от выбора системы координат не зависят. Повернем все силы около их приложения так, чтобы они стали параллельны оси Оу и применим к повернутым силам теорему Вариньона. Так как R" является равнодействующей этих сил, то, согласно теореме Вариньона, имеем , т.к. , , получим

    Отсюда находим координату центра параллельных сил zc :

    Для определения координаты xc составим выражение момента сил относительно оси Oz .

    Для определения координаты yc повернем все силы, чтобы они стали параллельны оси Oz .

    Положение центра параллельных сил относительно начала координат (рис. 6.2) можно определить его радиусом-вектором:

    6.2. Центр тяжести твердого тела

    Центром тяжести твердого тела называется неизменно связанная с этим телом точка С , через которую проходит линия действия равнодействующей сил тяжести данного тела, при любом положении тела в пространстве.
    Центр тяжести применяется при исследовании устойчивости положений равновесия тел и сплошных сред, находящихся под действием сил тяжести и в некоторых других случаях, а именно: в сопротивлении материалов и в строительной механике - при использовании правила Верещагина.
    Существуют два способа определения центра тяжести тела: аналитический и экспериментальный. Аналитический способ определения центра тяжести непосредственно вытекает из понятия центра параллельных сил.
    Координаты центра тяжести, как центра параллельных сил, определяются формулами:

    где Р - вес всего тела; pk - вес частиц тела; xk , yk , zk - координаты частиц тела.
    Для однородного тела вес всего тела и любой её части пропорционален объёму P=Vγ , pk =vk γ , где γ - вес единицы объёма, V - объем тела. Подставляя выражения P , pk в формулы определения координат центра тяжести и, сокращая на общий множитель γ , получим:

    Точка С , координаты которой определяются полученными формулами, называется центром тяжести объема .
    Если тело представляет собой тонкую однородную пластину, то центр тяжести определяется формулами:

    где S - площадь всей пластины; sk - площадь её части; xk , yk - координаты центра тяжести частей пластины.
    Точка С в данном случае носит название центра тяжести площади .
    Числители выражений, определяющих координаты центра тяжести плоских фигур, называются статическими моментами площади относительно осей у и х :

    Тогда центр тяжести площади можно определить по формулам:

    Для тел, длина которых во много раз превышает размеры поперечного сечения, определяют центр тяжести линии. Координаты центра тяжести линии определяют формулами:

    где L - длина линии; lk - длина ее частей; xk , yk , zk - координата центра тяжести частей линии.

    6.3. Способы определения координат центров тяжести тел

    Основываясь на полученных формулах, можно предложить практические способы определения центров тяжести тел.
    1. Симметрия . Если тело имеет центр симметрии, то центр тяжести находится в центре симметрии.
    Если тело имеет плоскость симметрии. Например, плоскость ХОУ, то центр тяжести лежит в этой плоскости.
    2. Разбиение . Для тел, состоящих из простых по форме тел, используется способ разбиения. Тело разбивается на части, центр тяжести которых находится методом симметрии. Центр тяжести всего тела определяется по формулам центра тяжести объема (площади).

    Пример . Определить центр тяжести пластины, изображенной на помещенном ниже рисунке (рис. 6.3). Пластину можно разбить на прямоугольники различным способом и определить координаты центра тяжести каждого прямоугольника и их площади.


    Рис.6.3

    Ответ: x c =17.0см; y c =18.0см.

    3. Дополнение . Этот способ является частным случаем способа разбиения. Он используется, когда тело имеет вырезы, срезы и др., если координаты центра тяжести тела без выреза известны.

    Пример . Определить центр тяжести круглой пластины имеющий вырез радиусом r = 0,6 R (рис. 6.4).


    Рис.6.4

    Круглая пластина имеет центр симметрии. Поместим начало координат в центре пластины. Площадь пластины без выреза , площадь выреза . Площадь пластины с вырезом ; .
    Пластина с вырезом имеет ось симметрии О1 x , следовательно, yc =0.

    4. Интегрирование . Если тело нельзя разбить на конечное число частей, положение центров тяжести которых известны, тело разбивают на произвольные малые объемы , для которых формула с использованием метода разбиения принимает вид: .
    Далее переходят к пределу, устремляя элементарные объемы к нулю, т.е. стягивая объемы в точки. Суммы заменяют интегралами, распространенными на весь объем тела, тогда формулы определения координат центра тяжести объема принимают вид:

    Формулы для определения координат центра тяжести площади:

    Координаты центра тяжести площади необходимо определять при изучении равновесия пластинок, при вычислении интеграла Мора в строительной механике.

    Пример . Определить центр тяжести дуги окружности радиуса R с центральным углом АОВ = 2α (рис. 6.5).


    Рис. 6.5

    Дуга окружности симметрична оси Ох , следовательно, центр тяжести дуги лежит на оси Ох , = 0.
    Согласно формуле для центра тяжести линии:

    6. Экспериментальный способ . Центры тяжести неоднородных тел сложной конфигурации можно определять экспериментально: методом подвешивания и взвешивания. Первый способ состоит в том, что тело подвешивается на тросе за различные точки. Направление троса на котором подвешено тело, будет давать направление силы тяжести. Точка пересечения этих направлений определяет центр тяжести тела.
    Метод взвешивания состоит в том, что сначала определяется вес тела, например автомобиля. Затем на весах определяется давление заднего моста автомобиля на опору. Составив уравнение равновесия относительно какой- либо точки, например оси передних колес, можно вычислить расстояние от этой оси до центра тяжести автомобиля (рис. 6.6).



    Рис.6.6

    Иногда при решении задач следует применять одновременно разные методы определения координат центра тяжести.

    6.4. Центры тяжести некоторых простейших геометрических фигур

    Для определения центров тяжести тел часто встречающейся формы (треуголника, дуги окружности, сектора, сегмента) удобно использовать справочные данные (табл. 6.1).

    Таблица 6.1

    Координаты центра тяжести некоторых однородных тел

    Наименование фигуры

    Рисунок

    Дуга окружности : центр тяжести дуги однородной окружности находится на оси симметрии (координата уc =0).

    R - радиус окружности.

    Однородный круговой сектор уc =0).

    где α - половина центрального угла; R - радиус окружности.

    Сегмент : центр тяжести расположен на оси симметрии (координата уc =0).

    где α - половина центрального угла; R - радиус окружности.

    Полукруг :

    Треугольник : центр тяжести однородного треугольника находится в точке пересечения его медиан.

    где x1 , y1 , x2 , y2 , x3 , y3 - координаты вершин треугольника

    Конус : центр тяжести однородного кругового конуса лежит на его высоте и отстоит на расстояние 1/4 высоты от основания конуса.

    Исходя из полученных выше общих формул, можно указать конкретные способы определения координат центров тяжести тел.

    1. Симметрия. Если однородное тело имеет плоскость, ось или центр симметрии (рис.7), то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.

    Рис.7

    2. Разбиение. Тело разбивается на конечное число частей (рис.8), для каждой из которых положение центра тяжести и площадь известны.

    Рис.8

    3.Метод отрицательных площадей. Частный случай способа разбиения (рис.9). Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны. Тело в виде пластинки с вырезом представляют комбинацией сплошной пластинки (без выреза) с площадью S 1 и площади вырезанной части S 2 .

    Рис.9

    4.Метод группировки. Является хорошим дополнением двух последних методов. После разбиения фигуры на составные элементы часть их бывает удобно объединить вновь, чтобы затем упростить решение путем учета симметрии этой группы.

    Центры тяжести некоторых одно­родных тел.

    1) Центр тяжести дуги окруж­ности. Рассмотрим дугу АВ радиуса R с центральным углом . В силу сим­метрии центр тяжести этой дуги лежит на оси Ox (рис. 10).

    Рис.10

    Найдем координату по формуле . Для этого выделим на дуге АВ элемент ММ’ длиною , положение которого определяется углом . Координата х элемента ММ’ будет . Подставляя эти значения х и dl и имея в виду, что интеграл должен быть распространен на всю длину дуги, получим:

    где L - длина дуги АВ , равная .

    Отсюда окончательно нахо­дим, что центр тяжести дуги окружности лежит на ее оси симметрии на расстоянии от центра О , равном

    где угол измеряется в радианах.

    2) Центр тяжести площади тре­угольника. Рассмотрим треугольник, лежащий в плоскости Oxy , координаты вершин которого известны: A i (x i ,y i ), (i = 1,2,3). Разбивая треугольник на узкие полоски, параллельные стороне А 1 А 2 , придем к выводу, что центр тяжести треугольника должен принадлежать медиане А 3 М 3 (рис.11) .

    Рис.11

    Разбивая треугольник на полоски, параллельные стороне А 2 А 3 , можно убедиться, что он должен лежать на медиане А 1 М 1 . Таким образом, центр тяжести треугольника лежит в точке пересечения его медиан , которая, как известно, отделяет от каждой медианы третью часть, считая от соответствующей стороны.

    В частности, для медианы А 1 М 1 получим, учитывая, что координаты точки М 1 - это среднее арифметическое координат вершин А 2 и А 3:

    x c = x 1 + (2/3)∙(x М 1 - x 1) = x 1 + (2/3)∙[(x 2 + x 3)/2-x 1 ] = (x 1 + x 2 +x 3)/3.


    Таким образом, координаты центра тяжести треугольника представляют собой среднее арифметическое из координат его вершин:

    x c =(1/3)Σx i ; y c =(1/3)Σy i .

    3) Центр тяжести площади кругового сектора. Рассмотрим сектор круга радиуса R с центральным углом 2α, расположенный симметрично относительно оси Ox (рис.12) .

    Очевидно, что y c = 0, а расстояние от центра круга, из которого вырезан этот сектор, до его центра тяжести можно определить по формуле:

    Рис.12

    Проще всего этот интеграл вычислить, разбивая область интегрирования на элементарные секторы с углом d φ. С точностью до бесконечно малых первого порядка такой сектор можно заменить треугольником с основанием, равным R ×d φ и высотой R . Площадь такого треугольника dF =(1/2)R 2 ∙d φ, а его центр тяжести находится на расстоянии 2/3R от вершины, поэтому в (5) положим x = (2/3)R ∙cosφ. Подставляя в (5) F = αR 2 , получим:

    С помощью последней формулы вычислим, в частности, расстояние до центра тяжести полукруга .

    Подставляя в (2) α = π/2, получим: x c = (4R )/(3π) ≅ 0,4R .

    Пример 1. Определим центр тяжести однородного тела, изображён­ного на рис. 13.

    Рис.13

    Тело однородное, состоящее из двух частей, имеющих симметричную форму. Координаты центров тяжести их:

    Объёмы их:

    Поэтому координаты центра тяжести тела

    Пример 2. Найдем центр тяжести пластины, согнутой под прямым углом. Размеры – на чертеже (рис.14).

    Рис.14

    Координаты центров тяжести:

    Площади:

    Рис. 6.5.
    Пример 3. У квадратного листа см вырезано квадратное отверстие см (рис.15). Найдем центр тяжести листа.

    Рис.15

    В этой задаче удобнее разделить тело на две части: большой квадрат и квадратное отверстие. Только площадь отверстия надо считать отрицательной. Тогда координаты центра тяжести листа с отверстием:

    координата так как тело имеет ось симметрии (диагональ).

    Пример 4. Проволочная скобка (рис.16) состоит из трёх участков оди­наковой длины l .

    Рис.16

    Координаты центров тяжести участ­ков:

    Поэтому координаты центра тяжести всей скобки:

    Пример 5. Определить положение центра тяжести фермы, все стержни которой имеют одинаковую погонную плотность (рис.17).

    Напомним, что в физике плотность тела ρ и его удельный вес g связаны соотношением: γ= ρg , где g - ускорение свободного падения. Чтобы найти массу такого однородного тела, нужно плотность умножить на его объем.

    Рис.17

    Термин «линейная» или «погонная» плотность означает, что для определения массы стержня фермы нужно погонную плотность умножить на длину этого стержня.

    Для решения задачи можно воспользоваться методом разбиения. Представив заданную ферму в виде суммы 6 отдельных стержней, получим:

    где L i длина i -го стержня фермы, а x i , y i - координаты его центра тяжести.

    Решение этой задачи можно упростить, если сгруппировать 5 последних стержней фермы. Нетрудно видеть, что они образуют фигуру, имеющую центр симметрии, расположенный посредине четвертого стержня, где и находится центр тяжести этой группы стержней.

    Таким образом, заданную ферму можно представить комбинацией всего двух групп стержней.

    Первая группа состоит из первого стержня, для нее L 1 = 4 м, x 1 = 0 м, y 1 = 2 м. Вторая группа стержней состоит из пяти стержней, для нее L 2 = 20 м, x 2 = 3 м, y 2 = 2 м.

    Координаты центра тяжести фермы находим по формуле:

    x c = (L 1 ∙x 1 + L 2 ∙x 2)/(L 1 + L 2) = (4∙0 + 20∙3)/24 = 5/2 м;

    y c = (L 1 ∙y 1 + L 2 ∙y 2)/(L 1 + L 2) = (4∙2 + 20∙2)/24 = 2 м.

    Отметим, что центр С лежит на прямой, соединяющей С 1 и С 2 и делит отрезок С 1 С 2 в отношении: С 1 С /СС 2 = (x c - x 1)/(x 2 - x c ) = L 2 / L 1 = 2,5/0,5.

    Вопросы для самопроверки

    Что называется центром параллельных сил?

    Как определяются координаты центра параллельных сил?

    Как определить центр параллельных сил, равнодействующая которых равна нулю?

    Каким свойством обладает центр параллельных сил?

    По каким формулам вычисляются координаты центра параллельных сил?

    Что называется центром тяжести тела?

    Почему силы притяжения Земле, действующие на точку тела, можно принять за систему параллельных сил?

    Запишите формулу для определения положения центра тяжести неоднородных и однородных тел, формулу для определения положения центра тяжести плоских сечений?

    Запишите формулу для определения положения центра тяжести простых геометрических фигур: прямоугольника, треугольника, трапеции и половины круга?

    Что называют статическим моментом площади?

    Приведите пример тела, центр тяжести которого расположен вне тела.

    Как используются свойства симметрии при определении центров тяжести тел?

    В чем состоит сущность способа отрицательных весов?

    Где расположен центр тяжести дуги окружности?

    Каким графическим построением можно найти центр тяжести треугольника?

    Запишите формулу, определяющую центр тяжести кругового сектора.

    Используя формулы, определяющие центры тяжести треугольника и кругового сектора, выведите аналогичную формулу для кругового сегмента.

    По каким формулам вычисляются координаты центров тяжести однородных тел, плоских фигур и линий?

    Что называется статическим моментом площади плоской фигуры относительно оси, как он вычисляется и какую размерность имеет?

    Как определить положение центра тяжести площади, если известно положение центров тяжести отдельных ее частей?

    Какими вспомогательными теоремами пользуются при определении положения центра тяжести?

    В инженерной практике случается, что возникает необходимость вычислить координаты центра тяжести сложной плоской фигуры, состоящей из простых элементов, для которых расположение центра тяжести известно. Такая задача является частью задачи определения...

    Геометрических характеристик составных поперечных сечений балок и стержней. Часто с подобными вопросами приходится сталкиваться инженерам-конструкторам вырубных штампов при определении координат центра давления, разработчикам схем погрузки различного транспорта при размещении грузов, проектировщикам строительных металлических конструкций при подборе сечений элементов и, конечно, студентам при изучении дисциплин «Теоретическая механика» и «Сопротивление материалов».

    Библиотека элементарных фигур.

    Для симметричных плоских фигур центр тяжести совпадает с центром симметрии. К симметричной группе элементарных объектов относятся: круг, прямоугольник (в том числе квадрат), параллелограмм (в том числе ромб), правильный многоугольник.

    Из десяти фигур, представленных на рисунке выше, только две являются базовыми. То есть, используя треугольники и сектора кругов, можно скомбинировать почти любую фигуру, имеющую практический интерес. Любые произвольные кривые можно, разбив на участки, заменить дугами окружностей.

    Оставшиеся восемь фигур являются самыми распространенными, поэтому они и были включены в эту своеобразную библиотеку. В нашей классификации эти элементы не являются базовыми. Прямоугольник, параллелограмм и трапецию можно составить из двух треугольников. Шестиугольник – это сумма из четырех треугольников. Сегмент круга — это разность сектора круга и треугольника. Кольцевой сектор круга — разность двух секторов. Круг – это сектор круга с углом α=2*π=360˚. Полукруг – это, соответственно, сектор круга с углом α=π=180˚.

    Расчет в Excel координат центра тяжести составной фигуры.

    Передавать и воспринимать информацию, рассматривая пример, всегда легче, чем изучать вопрос на чисто теоретических выкладках. Рассмотрим решение задачи «Как найти центр тяжести?» на примере составной фигуры, изображенной на рисунке, расположенном ниже этого текста.

    Составное сечение представляет собой прямоугольник (с размерами a 1 =80 мм, b 1 =40 мм), к которому слева сверху добавили равнобедренный треугольник (с размером основания a 2 =24 мм и высотой h 2 =42 мм) и из которого справа сверху вырезали полукруг (с центром в точке с координатами x 03 =50 мм и y 03 =40 мм, радиусом r 3 =26 мм).

    В помощь для выполнения расчета привлечем программу MS Excel или программу OOo Calc . Любая из них легко справится с нашей задачей!

    В ячейках с желтой заливкой выполним вспомогательные предварительные расчеты .

    В ячейках со светло-желтой заливкой считаем результаты .

    Синий шрифт – это исходные данные .

    Черный шрифт – это промежуточные результаты расчетов .

    Красный шрифт – это окончательные результаты расчетов .

    Начинаем решение задачи – начинаем поиск координат центра тяжести сечения.

    Исходные данные:

    1. Названия элементарных фигур, образующих составное сечение впишем соответственно

    в ячейку D3: Прямоугольник

    в ячейку E3: Треугольник

    в ячейку F3: Полукруг

    2. Пользуясь представленной в этой статье «Библиотекой элементарных фигур», определим координаты центров тяжести элементов составного сечения xci и yci в мм относительно произвольно выбранных осей 0x и 0y и запишем

    в ячейку D4: =80/2= 40,000

    xc 1 = a 1 /2

    в ячейку D5: =40/2=20,000

    yc 1 = b 1 /2

    в ячейку E4: =24/2=12,000

    xc 2 = a 2 /2

    в ячейку E5: =40+42/3=54,000

    yc 2 = b 1 + h 2 /3

    в ячейку F4: =50=50,000

    xc 3 = x 03

    в ячейку F5: =40-4*26/3/ПИ()=28,965

    yc 3 = y 03 -4* r3 /3/ π

    3. Рассчитаем площади элементов F 1 , F 2 , F 3 в мм2, воспользовавшись вновь формулами из раздела «Библиотека элементарных фигур»

    в ячейке D6: =40*80=3200

    F 1 = a 1 * b 1

    в ячейке E6: =24*42/2=504

    F2 = a2 *h2 /2

    в ячейке F6: =-ПИ()/2*26^2=-1062

    F3 = -π/2*r3 ^2

    Площадь третьего элемента – полукруга – отрицательная потому, что это вырез – пустое место!

    Расчет координат центра тяжести:

    4. Определим общую площадь итоговой фигуры F 0 в мм2

    в объединенной ячейке D8E8F8: =D6+E6+F6=2642

    F 0 = F 1 + F 2 + F 3

    5. Вычислим статические моменты составной фигурыSx и Sy в мм3 относительно выбранных осей 0x и 0y

    в объединенной ячейке D9E9F9: =D5*D6+E5*E6+F5*F6=60459

    Sx = yc1 * F1 + yc2 *F2 + yc3 *F3

    в объединенной ячейке D10E10F10: =D4*D6+E4*E6+F4*F6=80955

    Sy = xc1 * F1 + xc2 *F2 + xc3 *F3

    6. И в завершение рассчитаем координаты центра тяжести составного сеченияXc и Yc в мм в выбранной системе координат 0x — 0y

    в объединенной ячейке D11E11F11: =D10/D8=30,640

    Xc = Sy / F 0

    в объединенной ячейке D12E12F12: =D9/D8=22,883

    Yc =Sx /F0

    Задача решена, расчет в Excel выполнен — найдены координаты центра тяжести сечения, составленного при использовании трех простых элементов!

    Заключение.

    Пример в статье был выбран очень простым для того, чтобы легче было разобраться в методологии расчетов центра тяжести сложного сечения. Метод заключается в том, что любую сложную фигуру следует разбить на простые элементы с известными местами расположения центров тяжести и произвести итоговые вычисления для всего сечения.

    Если сечение составлено из прокатных профилей – уголков и швеллеров, то их нет необходимости разбивать на прямоугольники и квадраты с вырезанными круговыми «π/2»- секторами. Координаты центров тяжести этих профилей приведены в таблицах ГОСТов, то есть и уголок и швеллер будут в ваших расчетах составных сечений базовыми элементарными элементами (о двутаврах, трубах, прутках и шестигранниках говорить нет смысла – это центрально симметричные сечения).

    Расположение осей координат на положение центра тяжести фигуры, конечно, не влияет! Поэтому выбирайте систему координат, упрощающую вам расчеты. Если, например, я развернул бы в нашем примере систему координат на 45˚ по часовой стрелке, то вычисление координат центров тяжести прямоугольника, треугольника и полукруга превратилось бы в еще один отдельный и громоздкий этап расчетов, который «в уме» не выполнишь.

    Представленный ниже расчетный файл Excel в данном случае программой не является. Скорее – это набросок калькулятора, алгоритм, шаблон по которому следует в каждом конкретном случае составлять свою последовательность формул для ячеек с яркой желтой заливкой .

    Итак, как найти центр тяжести любого сечения вы теперь знаете! Полный расчет всех геометрических характеристик произвольных сложных составных сечений будет рассмотрен в одной из ближайших статей в рубрике « ». Следите за новостями на блоге.

    Для получения информации о выходе новых статей и для скачивания рабочих файлов программ прошу вас подписаться на анонсы в окне, расположенном в конце статьи или в окне вверху страницы.

    После ввода адреса своей электронной почты и нажатия на кнопку «Получать анонсы статей» НЕ ЗАБЫВАЙТЕ ПОДТВЕРЖДАТЬ ПОДПИСКУ кликом по ссылке в письме, которое тут же придет к вам на указанную почту (иногда - в папку « Спам» )!

    Несколько слов о бокале, монете и двух вилках, которые изображены на «значке-иллюстрации» в самом начале статьи. Многим из вас, безусловно, знаком этот «трюк», вызывающий восхищенные взгляды детей и непосвященных взрослых. Тема этой статьи – центр тяжести. Именно он и точка опоры, играя с нашим сознанием и опытом, попросту дурачат наш разум!

    Центр тяжести системы «вилки+монета» всегда располагается на фиксированном расстоянии по вертикали вниз от края монеты, который в свою очередь является точкой опоры. Это положение устойчивого равновесия! Если покачать вилки, то сразу становится очевидным, что система стремится занять свое прежнее устойчивое положение! Представьте маятник – точка закрепления (=точка опоры монеты на кромку бокала), стержень-ось маятника (=в нашем случае ось виртуальная, так как масса двух вилок разведена в разные стороны пространства) и груз внизу оси (=центр тяжести всей системы «вилки+монета»). Если начать отклонять маятник от вертикали в любую сторону (вперед, назад, налево, направо), то он неизбежно под действием силы тяжести будет возвращаться в исходное устойчивое состояние равновесия (это же самое происходит и с нашими вилками и монетой)!

    Кто не понял, но хочет понять – разберитесь самостоятельно. Это ведь очень интересно «доходить» самому! Добавлю, что этот же принцип использования устойчивого равновесия реализован и в игрушке ванька–встань-ка. Только центр тяжести у этой игрушки расположен выше точки опоры, но ниже центра полусферы опорной поверхности.

    Всегда рад вашим комментариям, уважаемые читатели!!!

    Прошу, УВАЖАЯ труд автора, скачивать файл ПОСЛЕ ПОДПИСКИ на анонсы статей.

    Прямоугольник. Так как прямоугольник имеет две оси симметрии, то его центр тяжести находится на пересечении осей симметрии, т.е. в точке пересечения диагоналей прямоугольника.

    Треугольник. Центр тяжести лежит в точке пересечения его медиан. Из геометрии известно, что медианы треугольника пересекаются в одной точке и делятся в отношении 1:2 от основания.

    Круг. Так как круг имеет две оси симметрии, то его центр тяжести находится на пересечении осей симметрии.

    Полукруг. Полукруг имеет одну ось симметрии, то центр тяжести лежит на этой оси. Другая координата центра тяжести вычисляется по формуле: .

    Многие конструктивные элементы изготавливают из стандартного проката – уголков, двутавров, швеллеров и других. Все размеры, а так же геометрические характеристики прокатных профилей это табличные данные, которые можно найти в справочной литературе в таблицах нормального сортамента (ГОСТ 8239-89, ГОСТ 8240-89).

    Пример 1. Определить положение центра тяжести фигуры, представленной на рисунке.

    Решение:

      Выбираем оси координат, так чтобы ось Ох прошла по крайнему нижнему габаритному размеру, а ось Оу – по крайнему левому габаритному размеру.

      Разбиваем сложную фигуру на минимальное количество простых фигур:

      прямоугольник 20х10;

      треугольник 15х10;

      круг R=3 см.

      Вычисляем площадь каждой простой фигуры, её координаты центра тяжести. Результаты вычислений заносим в таблицу

    № фигуры

    Площадь фигуры А,

    Координаты центра тяжести

    Ответ: С(14,5; 4,5)

    Пример 2 . Определить координаты центра тяжести составного сечения, состоящего из листа и прокатных профилей.

    Решение.

      Выбираем оси координат, так как показано на рисунке.

      Обозначим фигуры номерами и выпишем из таблицы необходимые данные:

    № фигуры

    Площадь фигуры А,

    Координаты центра тяжести

      Вычисляем координаты центра тяжести фигуры по формулам:

    Ответ: С(0; 10)

    Лабораторная работа №1 «Определение центра тяжести составных плоских фигур»

    Цель: Определить центр тяжести заданной плоской сложной фигуры опытным и аналитическим способами и сравнить их результаты.

    Порядок выполнения работы

      Начертить в тетрадях свою плоскую фигуру по размерам, с указанием осей координат.

      Определить центр тяжести аналитическим способом.

      1. Разбить фигуру на минимальное количество фигур, центры тяжести которых, мы знаем, как определить.

        Указать номера площадей и координаты центра тяжести каждой фигуры.

        Вычислить координаты центра тяжести каждой фигуры.

        Вычислить площадь каждой фигуры.

        Вычислить координаты центра тяжести всей фигуры по формулам (положение центра тяжести нанести на чертеж фигуры):

    Установка для опытного определения координат центра тяжести способом подвешивания состоит из вертикальной стойки 1 (см. рис.), к которой прикреплена игла 2 . Плоская фигура 3 изготовлена из картона, в котором легко проколоть отверстие. Отверстия А и В прокалываются в произвольно расположенных точках (лучше на наиболее удаленном расстоянии друг от друга). Плоская фигура подвешивается на иглу сначала в точке А , а потом в точке В . При помощи отвеса 4 , закрепленного на той же игле, на фигуре прочерчивают карандашом вертикальную линию, соответствующую нити отвеса. Центр тяжести С фигуры будет находиться в точке пересечения вертикальных линий, нанесенных при подвешивании фигуры в точках А и В .

    Конспект урока по физике 7 класс

    Тема: Определение центра тяжести

    Учитель физики МОУ Аргаяшская СОШ №2

    Хидиятулина З.А.

    Лабораторная работа:

    «Определение центра тяжести плоской пластины»

    Цель : нахождение центра тяжести плоской пластины.

    Теоретическая часть:

    Центр тяжести есть у всех тел. Центром тяжести тела называется точка, относительно которой суммарный момент сил тяжести, действующих на тело, равен нулю. Например, если подвесить предмет за его центр тяжести, то он останется в покое. То есть, его положение в пространстве не изменится (он не перевернётся вверх ногами или на бок). Почему одни тела опрокидываются, а другие — нет? Если из центра тяжести тела провести линию, перпендикулярную полу, то в случае, когда линия выходит за границы опоры тела, тело упадёт. Чем больше площадь опоры, чем ближе расположен центр тяжести тела к центральной точке площади опоры и центральной линии центра тяжести, тем более устойчивым будет положение тела. Например, центр тяжести знаменитой Пизанской башни расположен всего в двух метрах от середины её опоры. А падение случится лишь тогда, когда это отклонение составит около 14 метров. Центр тяжести тела человека находится примерно на 20,23 сантиметра ниже пупка. Воображаемая линия, проведённая отвесно из центра тяжести, проходит ровно между ступнями. У куклы-неваляшки секрет заключается также в центре тяжести тела. Её устойчивость объясняется тем, что центр тяжести у неваляшки находится в самом низу, она фактически стоит на нём. Условием сохранения равновесия тела является прохождение вертикальной оси его общего центра тяжести внутри площади опоры тела. Если вертикаль центра тяжести тела выходит из площади опоры, тело теряет равновесие и падает. Поэтому чем больше площадь опоры, чем ближе расположен центр тяжести тела к центральной точке площади опоры и центральной линии центра тяжести, тем более устойчивым будет положение тела. Площадь опоры при вертикальном положении человека ограничена тем пространством, которое находится под подошвами и между стопами. Центральная точка отвесной линии центра тяжести на стопе находится на 5 см впереди от пяточного бугра. Сагиттальный размер площади опоры всегда преобладает над фронтальным, поэтому и смещение отвесной линии центра тяжести легче происходит вправо и влево, чем назад, а особенно трудно — вперед. В связи с этим устойчивость на поворотах при быстром беге значительно меньше, чем в сагиттальном направлении (вперед или назад). Нога в обуви, особенно с широким каблуком и жесткой подошвой, устойчивее, чем без обуви, так как приобретает большую площадь опоры.

    Практическая часть:

    Цель работы: Используя предложенное оборудование, опытным путём найти положение центра тяжести двух фигур из картона и треугольника.

    Оборудование: Штатив, плотный картон, треугольник из школьного набора, линейка, скотч, нить, карандаш..

    Задание 1: Определите положение центра тяжести плоской фигуры произвольной формы

    С помощью ножниц вырежьте из картона фигуру произвольной формы. Скотчем прикрепите к ней нить в точке А. Подвесьте фигуру за нить к лапке штатива. С помощью линейки и карандаша отметьте на картоне линию вертикали АВ.

    Переместите точку крепления нити в положение С. Повторите описанные действия

    Точка О пересечения линий АВ и CD даёт искомое положение центра тяжести фигуры.

    Задание 2: Пользуясь только линейкой и карандашом, найдите положение центра тяжести плоской фигуры

    С помощью карандаша и линейки разбейте фигуру на два прямоугольника. Построением найдите положения О1 и О2 их центров тяжести. Очевидно, что центр тяжести всей фигуры находится на линии О1О2

    Разбейте фигуру на два прямоугольника другим способом. Построением найдите положения центров тяжести О3 и О4 каждого из них. Соедините точки О3 и О4 линией. Точка пересечения линий О1О2 и О3О4 определяет положение центра тяжести фигуры

    Задание 2: Определите положение центра тяжести треугольника

    С помощью скотча закрепите один из концов нити в вершине треугольника и подвесьте его к лапке штатива. С помощью линейки отметьте направление АВ линии действия силы тяжести (сделайте отметку на противоположной стороне треугольника)

    Повторите аналогичную процедуру, подвесив треугольник за вершину С. На противоположной вершине С стороне треугольника сделайте отметку D .

    С помощью скотча прикрепите к треугольнику отрезки нитей АВ и CD . Точка О их пересечения определяет положение центра тяжести треугольника. В данном случае центр тяжести фигуры находится вне пределов самого тела.

    III . Решение качественных задач

    1.С какой целью цирковые артисты при хождении по канату держат в руках тяжелые шесты?

    2.Почему человек, несущий на спине тяжелый груз, наклоняется вперед?

    3.Почему нельзя встать со стула, если не наклонить корпус вперед?

    4.Почему подъемный кран не опрокидывается в сторону поднимаемого груза? Почему без груза кран не опрокидывается в сторону противовеса?

    5.Почему у автомашин и велосипедов и т.п. тормоза лучше ставить на задние, а не на передние колеса?

    6.Почему, грузовик нагруженный сеном легче переворачивается, чем тот же грузовик нагруженный снегом?