Войти
Логопедический портал
  • Классный час "Сдадим ОГЭ успешно" (9 класс)
  • Как разгадывать ребусы с буквами и картинками: правила, советы, рекомендации
  • Тема любви в творчестве, лирике есенина сочинение Мое восприятие темы любви в лирике есенина
  • Декартовы координаты точек плоскости
  • Картотека игровых упражнений для обучения детей с нарушением речи правильному употреблению предлогов Д игра где что находится предлоги
  • Как определяют происхождение метеоритных кратеров
  • Примеры на метод вариации произвольной постоянной. Метод Лагранжа (вариации постоянной). Линейные дифференциальные уравнения первого порядка

    Примеры на метод вариации произвольной постоянной. Метод Лагранжа (вариации постоянной). Линейные дифференциальные уравнения первого порядка

    Рассмотрим линейное неоднородное дифференциальное уравнение первого порядка:
    (1) .
    Существует три способа решения этого уравнения:

    • метод вариации постоянной (Лагранжа).

    Рассмотрим решение линейного дифференциального уравнения первого порядка методом Лагранжа.

    Метод вариации постоянной (Лагранжа)

    В методе вариации постоянной мы решаем уравнение в два этапа. На первом этапе мы упрощаем исходное уравнение и решаем однородное уравнение. На втором этапе мы заменим постоянную интегрирования, полученную на первой стадии решения, на функцию. После чего ищем общее решение исходного уравнения.

    Рассмотрим уравнение:
    (1)

    Шаг 1 Решение однородного уравнения

    Ищем решение однородного уравнения:

    Это уравнение с разделяющимися переменными

    Разделяем переменные - умножаем на dx , делим на y :

    Интегрируем:

    Интеграл по y - табличный :

    Тогда

    Потенцируем:

    Заменим постоянную e C на C и уберем знак модуля, что сводится к умножению на постоянную ±1 , которую включим в C :

    Шаг 2 Заменим постоянную C на функцию

    Теперь заменим постоянную C на функцию от x :
    C → u(x)
    То есть, будем искать решение исходного уравнения (1) в виде:
    (2)
    Находим производную.

    По правилу дифференцирования сложной функции:
    .
    По правилу дифференцирования произведения:

    .
    Подставляем в исходное уравнение (1) :
    (1) ;

    .
    Два члена сокращаются:
    ;
    .
    Интегрируем:
    .
    Подставляем в (2) :
    .
    В результате получаем общее решение линейного дифференциального уравнения первого порядка:
    .

    Пример решения линейного дифференциального уравнения первого порядка методом Лагранжа

    Решить уравнение

    Решение

    Решаем однородное уравнение:

    Разделяем переменные:

    Умножим на :

    Интегрируем:

    Интегралы табличные :

    Потенцируем:

    Заменим постоянную e C на C и убираем знаки модуля:

    Отсюда:

    Заменим постоянную C на функцию от x :
    C → u(x)

    Находим производную:
    .
    Подставляем в исходное уравнение:
    ;
    ;
    Или:
    ;
    .
    Интегрируем:
    ;
    Решение уравнения:
    .

    Метод вариации произвольных постоянных

    Метод вариации произвольных постоянных для построения решения линейного неоднородного дифференциального уравнения

    a n (t )z (n ) (t ) + a n − 1 (t )z (n − 1) (t ) + ... + a 1 (t )z "(t ) + a 0 (t )z (t ) = f (t )

    состоит в замене произвольных постоянных c k в общем решении

    z (t ) = c 1 z 1 (t ) + c 2 z 2 (t ) + ... + c n z n (t )

    соответствующего однородного уравнения

    a n (t )z (n ) (t ) + a n − 1 (t )z (n − 1) (t ) + ... + a 1 (t )z "(t ) + a 0 (t )z (t ) = 0

    на вспомогательные функции c k (t ) , производные которых удовлетворяют линейной алгебраической системе

    Определителем системы (1) служит вронскиан функций z 1 ,z 2 ,...,z n , что обеспечивает её однозначную разрешимость относительно .

    Если - первообразные для , взятые при фиксированных значениях постоянных интегрирования, то функция

    является решением исходного линейного неоднородного дифференциального уравнения. Интегрирование неоднородного уравнения при наличии общего решения соответствующего однородного уравнения сводится, таким образом, к квадратурам .

    Метод вариации произвольных постоянных для построения решений системы линейных дифференциальных уравнений в векторной нормальной форме

    состоит в построении частного решения (1) в виде

    где Z (t ) - базис решений соответствующего однородного уравнения, записанный в виде матрицы, а векторная функция , заменившая вектор произвольных постоянных, определена соотношением . Искомое частное решение (с нулевыми начальными значениями при t = t 0 имеет вид

    Для системы с постоянными коэффициентами последнее выражение упрощается:

    Матрица Z (t )Z − 1 (τ) называется матрицей Коши оператора L = A (t ) .

    Внешние ссылки

    • exponenta.ru - Теоретическая справка c примерами

    Wikimedia Foundation . 2010 .

    Метод вариации произвольной постоянной, или метод Лагранжа — еще один способ решения линейных дифференциальных уравнений первого порядка и уравнения Бернулли.

    Линейные дифференциальные уравнения первого порядка - это уравнения вида y’+p(x)y=q(x). Если в правой части стоит нуль: y’+p(x)y=0, то это — линейное однородное уравнение 1го порядка. Соответственно, уравнение с ненулевой правой частью, y’+p(x)y=q(x), — неоднородное линейное уравнение 1го порядка.

    Метод вариации произвольной постоянной (метод Лагранжа) состоит в следующем:

    1) Ищем общее решение однородного уравнения y’+p(x)y=0: y=y*.

    2) В общем решении С считаем не константой, а функцией от икса: С=С(x). Находим производную общего решения (y*)’ и в первоначальное условие подставляем полученное выражение для y* и (y*)’. Из полученного уравнения находим функцию С(x).

    3) В общее решение однородного уравнения вместо С подставляем найденное выражение С(x).

    Рассмотрим примеры на метод вариации произвольной постоянной. Возьмем те же задания, что и в , сравним ход решения и убедимся, что полученные ответы совпадают.

    1) y’=3x-y/x

    Перепишем уравнение в стандартном виде (в отличие от метода Бернулли, где форма записи нам нужна была только для того, чтобы увидеть, что уравнение — линейное).

    y’+y/x=3x (I). Теперь действуем по плану.

    1) Решаем однородное уравнение y’+y/x=0. Это уравнение с разделяющимися переменными. Представляем y’=dy/dx, подставляем: dy/dx+y/x=0, dy/dx=-y/x. Обе части уравнения умножаем на dx и делим на xy≠0: dy/y=-dx/x. Интегрируем:

    2) В полученном общем решении однородного уравнения будем считать С не константой, а функцией от x: С=С(x). Отсюда

    Полученные выражения подставляем в условие (I):

    Интегрируем обе части уравнения:

    здесь С — уже некоторая новая константа.

    3) В общее решение однородного уравнения y=C/x, где мы считали С=С(x), то есть y=C(x)/x, вместо С(x) подставляем найденное выражение x³+C: y=(x³+C)/x или y=x²+C/x. Получили такой же ответ, как и при решении методом Бернулли.

    Ответ: y=x²+C/x.

    2) y’+y=cosx.

    Здесь уравнение уже записано в стандартном виде, преобразовывать не надо.

    1) Решаем однородное линейное уравнение y’+y=0: dy/dx=-y; dy/y=-dx. Интегрируем:

    Чтобы получить более удобную форму записи, экспоненту в степени С примем за новую С:

    Это преобразование выполнили, чтобы удобнее было находить производную.

    2) В полученном общем решении линейного однородного уравнения считаем С не константой, а функцией от x: С=С(x). При этом условии

    Полученные выражения y и y’ подставляем в условие:

    Умножим обе части уравнения на

    Интегрируем обе части уравнения по формуле интегрирования по частям, получаем:

    Здесь С уже не функция, а обычная константа.

    3) В общее решение однородного уравнения

    подставляем найденную функцию С(x):

    Получили такой же ответ, как и при решении методом Бернулли.

    Метод вариации произвольной постоянной применим и для решения .

    y’x+y=-xy².

    Приводим уравнение к стандартному виду: y’+y/x=-y² (II).

    1) Решаем однородное уравнение y’+y/x=0. dy/dx=-y/x. Умножаем обе части уравнения на dx и делим на y: dy/y=-dx/x. Теперь интегрируем:

    Подставляем полученные выражения в условие (II):

    Упрощаем:

    Получили уравнение с разделяющимися переменными относительно С и x:

    Здесь С — уже обычная константа. В процессе интегрирования писали вместо С(x) просто С, чтобы не перегружать запись. А в конце вернулись к С(x), чтобы не путать С(x) с новой С.

    3) В общее решение однородного уравнения y=C(x)/x подставляем найденную функцию С(x):

    Получили такой же ответ, что и при решении способом Бернулли.

    Примеры для самопроверки:

    1. Перепишем уравнение в стандартном виде:y’-2y=x.

    1) Решаем однородное уравнение y’-2y=0. y’=dy/dx, отсюда dy/dx=2y, умножаем обе части уравнения на dx, делим на y и интегрируем:

    Отсюда находим y:

    Выражения для y и y’ подставляем в условие (для краткости будем питать С вместо С(x) и С’ вместо C"(x)):

    Для нахождения интеграла в правой части применяем формулу интегрирования по частям:

    Теперь подставляем u, du и v в формулу:

    Здесь С =const.

    3) Теперь подставляем в решение однородного