Войти
Логопедический портал
  • Империя цивилизации хеттов Чем выделялись хетты от прочих племен междуречья
  • Российская Академия Наук и история её создания Российская академия наук была основана в
  • Начало славных дел петра Царь Алексей Михайлович
  • Составление научного отчета по результатам социологического исследования
  • Степан демура: рубль пошел в последний путь
  • «Правописание Н и НН в причастиях и прилагательных
  • Роль биологии в космических исследованиях презентация. Презентация на тему "роль биологии в космических исследованиях". Используемая научная аппаратура

    Роль биологии в космических исследованиях презентация. Презентация на тему

      Слайд 1

      Чтобы понять какова роль биологии в космических исследованиях мы должны обратиться к космической биологии.Космическая биология-это комплекс преимущественно биологических наук, изучающих: 1) особенности жизнедеятельности земных организмов в условиях космического пространства и при полётах на космических летательных аппаратах 2) принципы построения биологических систем обеспечения жизнедеятельности членов экипажей космических кораблей и станций 3) внеземные формы жизни.

      Слайд 2

      Космическая биология - синтетическая наука, собравшая в единое целое достижения различных разделов биологии, авиационной медицины, астрономии, геофизики, радиоэлектроники и многих др. наук и создавшая на их основе собственные методы исследования. Работы по космической биологии ведутся на различных видах живых организмов, начиная с вирусов и заканчивая млекопитающими.

      Слайд 3

      Первоочередная задача космической биологии - изучение влияния факторов космического полёта (ускорение, вибрация, невесомость, измененная газовая среда, ограниченная подвижность и полная изоляция в замкнутых герметичных объёмах и др.) и космического пространства (вакуум, радиация, уменьшенная напряжённость магнитного поля и др.). Исследования по космической биологии ведутся в лабораторных экспериментах, в той или иной мере воспроизводящих влияние отдельных факторов космического полёта и космического пространства. Однако наиболее существенное значение имеют лётные биологические эксперименты, в ходе которых можно изучить влияние на живой организм комплекса необычных факторов внешней среды.

      Слайд 4

      На искусственных спутниках Земли и космических кораблях в полет отправлялись морские свинки, мыши, собаки, высшие растения и водоросли (хлорелла), различные микроорганизмы, семена растений, изолированные культуры тканей человека и кролика и другие биологические объекты.

      Слайд 5

      На участках выхода на орбиту у животных обнаруживалось ускорение учащения пульса и дыхания, которые постепенно исчезали после перехода корабля на орбитальный полёт. Наиболее важный непосредственный эффект действия ускорений - изменения лёгочной вентиляции и перераспределение крови в сосудистой системе, в том числе в малом круге, а также изменения в рефлекторной регуляции кровообращения. Нормализация пульса после воздействия ускорений в невесомости происходит значительно медленнее, чем после испытаний на центрифуге в условиях Земли. Как средние, так и абсолютные значения частоты пульса в невесомости были ниже, чем в соответствующих моделирующих опытах на Земле, и характеризовались выраженными колебаниями. Анализ двигательной активности собак показал довольно быструю адаптацию к необычным условиям невесомости и восстановление способности к координированным движениям. Такие же результаты были получены и в экспериментах на обезьянах. Исследованиями условных рефлексов у крыс и морских свинок после возвращения их из космического полёта установлено отсутствие изменений по сравнению с предполётными опытами.

      Слайд 6

      Важными для дальнейшего развития экофизиологического направления исследований явились эксперименты на советском биоспутнике "Космос-110" с двумя собаками на борту и на американском биоспутнике "Биос-3", на борту которого находилась обезьяна.Во время 22-суточного полёта собаки впервые подвергались не только влиянию неизбежно присущих факторов, но и ряду специальных воздействий (раздражение синусного нерва электрическим током, пережатие сонных артерий и т. д.), имевших целью выяснить особенности нервной регуляции кровообращения в условиях невесомости. Кровяное давление у животных регистрировалось прямым путём. Во время полёта обезьяны на биоспутнике " Биос-3", продолжавшегося 8,5 суток, были обнаружены серьёзные изменения циклов сна и бодрствования (фрагментация состояний сознания, быстрые переходы от сонливости к бодрствованию, заметное сокращение фаз сна, связанных со сновидениями и глубокой дремотой), а также нарушение суточной ритмики некоторых физиологических процессов. Последовавшая вскоре после досрочного окончания полёта смерть животного была, по мнению ряда специалистов, обусловлена влиянием невесомости, которая привела к перераспределению крови в организме, потере жидкости и нарушению обмена калия и натрия.

      Слайд 7

      Генетические исследования, проведённые в орбитальных космических полётах, показали, что пребывание в космическом пространстве оказывает стимулирующий эффект на сухие семена лука и нигеллы. Ускорение деления клеток было обнаружено на проростках гороха, кукурузы, пшеницы. В культуре устойчивой к радиации расы актиномицетов (бактерии) оказалось в 6 раз больше выживших спор и развивавшихся колоний, тогда как в чувствительном к радиации штамме (чистая культура вирусов, бактерий, других микроорганизмов или культура клеток, изолированная в определённое время и в определённом месте) произошло снижение соответствующих показателей в 12 раз. Послеполётные исследования и анализ полученной информации показали, что длительный космический полёт сопровождается у высокоорганизованных млекопитающих развитием детренированности сердечнососудистой системы, нарушением водно-солевого обмена, в частности значительным уменьшением содержания кальция в костях.

      Слайд 8

      В результате проведённых биологических исследований на высотных и баллистических ракетах, ИСЗ, ККС и др. космических летательных аппаратах установлено, что человек может жить и работать в условиях космического полёта сравнительно продолжительное время. Показано, что невесомость снижает переносимость организмом физических нагрузок и затрудняет реадаптацию к условиям нормальной (земной) гравитации. Важный результат биологических исследований в космосе - установление того факта, что невесомость не обладает мутагенной активностью, по крайней мере в отношении генных и хромосомных мутаций. При подготовке и проведении дальнейших экофизиологических и экобиологических исследований в космических полётах основное внимание будет уделено изучению влияния невесомости на внутриклеточные процессы, биологическим эффектам тяжёлых частиц с большим зарядом, суточной ритмике физиологических и биологических процессов, комбинированным воздействиям ряда факторов космического полёта.

      Слайд 9

      Исследования по космической биологии позволили разработать ряд защитных мероприятий и подготовили возможность безопасного полёта в космос человека, что и было осуществлено полётами советских, а затем и американских кораблей с людьми на борту.Значение космической биологии этим не исчерпывается. Исследования в этой области будут и впредь особенно нужны для решения ряда вопросов, в частности для биологической разведки новых космических трасс. Это потребует разработки новых методов биотелеметрии (способ дистанционного исследования биологических явлений и измерения биологических показателей), создания вживляемых устройств для малой телеметрии (совокупность технологий, позволяющая производить удалённые измерения и сбор информации для предоставления оператору или пользователю), превращения различных видов возникающей в организме энергии в необходимую для питания таких устройств электрическую энергию, новых методов "сжатия" информации и др. Чрезвычайно важную роль космическая биология сыграет и в разработке необходимых для длительных полётов биокомплексов, или замкнутых экологических систем с автотрофными и гетеротрофными организмами.

    Посмотреть все слайды

    ГОУ лицей № 000

    Калининского района г. Санкт-Петербурга

    Исследовательская работа

    Медико-биологические исследования в космосе

    Гуршевым Олегом

    Руководитель: учитель биологии

    Санкт- Петербург, 2011 г.

    Введение 2

    Начало медико-биологических исследований в середине XX века. 3

    Воздействие космического полёта на организм человека. 6

    Экзобиология. 10

    Перспективы развития исследований. 14

    Список использованных источников. 17

    Приложение (презентация, эксперименты) 18

    Введение

    Космическая биология и медицина - комплексная наука, изучающая особенности жизнедеятельности человека и других организмов в условиях космического полета. Основной задачей исследований в области космической биологии и медицины является разработка средств и методов жизнеобеспечения, сохранения здоровья и работоспособности членов экипажей космических кораблей и станций в полетах различной продолжительности и степени сложности. Космическая биология и медицина неразрывно связана с космонавтикой, астрономией , астрофизикой, геофизикой, биологией, авиационной медициной и многими другими науками.

    Актуальность темы довольно большая в наш современный и стремительный XXI век.

    Тема «Медико-биологический исследований» меня интересовала последних года два, с тех пор, как я определился в выборе профессии поэтому я решил сделать исследовательскую работу на эту тему.

    2011 год является юбилейным – 50 лет со дня первого человеческого полета в космос.


    Начало Медико-биологических исследований в середине XX века

    Отправными в становлении космической биологии и медицины считаются следующие вехи: 1949 г. - впервые появилась возможность проведения биологических исследований при полетах ракет; 1957 г. - впервые живое существо (собаку Лайку) отправили в околоземный орбитальный полет на втором искусственном спутнике Земли; 1961 г. - первый пилотируемый полет в космос, совершенный. С целью научного обоснования возможности безопасного в медицинском отношении полета человека в космос исследовалась переносимость воздействий, характерных для старта, орбитального полета, спуска и посадки на Землю космических летательных аппаратов (КЛА), а также испытывалась работа биотелеметрической аппаратуры и систем обеспечения жизнедеятельности космонавтов. Основное внимание уделялось изучению влияния на организм невесомости и космического излучения.

    Лайка (собака-космонавт) 1957 г.

    Р езультаты, полученные при проведении биологических экспериментов на ракетах, втором искусственном спутнике (1957 г.), вращаемых космических кораблях-спутниках (1960-1961 гг.), в совокупности с данными наземных клинических, физиологических, психологических, гигиенических и других исследований фактически открыли путь человеку в космос. Кроме этого, биологические эксперименты в космосе на этапе подготовки первого космического полета человека позволили выявить ряд функциональных изменений, возникающих в организме при действии факторов полета, что явилось основанием для планирования последующих экспериментов на животных и растительных организмах в полетах пилотируемых космических кораблей, орбитальных станций и биоспутников. Первый в мире биологический спутник с подопытным животным - собакой «Лайкой». Выведен на орбиту 03.11.1957 г. И находился там 5 месяцев. Спутник просуществовал на орбите до 14.04.1958 г. На спутнике имелось два радиопередатчика, телеметрическая система, программное устройство, научные приборы для исследования излучения Солнца и космических лучей, системы регенерации и терморегулирования для поддержания в кабине условий, необходимых для существования животного. Получены первые научные сведения о состоянии живого организма в условиях космического полёта.


    Достижения в области космической биологии и медицины во многом предопределили успехи в развитии пилотируемой космонавтики. Наряду с полетом , совершенном 12 апреля 1961 г., следует отметить такие эпохальные события в истории космонавтики, как высадку 21 июля 1969 г. астронавтов Армстронга (N. Armstrong) и Олдрина (Е. Aldrin) на поверхность Луны и многомесячные (до года) полеты экипажей на орбитальных станциях «Салют» и «Мир». Это стало возможным благодаря разработке теоретических основ космической биологии и медицины, методологии проведения медико-биологических исследований в космических полетах, обоснованию и внедрению методов отбора и предполетной подготовки космонавтов, а также разработке средств жизнеобеспечения, медицинского контроля, сохранения здоровья и работоспособности членов экипажа в полете.


    Команда Апполо 11 (слева на право): Neil. A. Armstrong, Command Module Pilot Michael Collins, Commander Edwin (Buzz) E. Aldrin.

    Воздействие космического полёта на организм человека

    В космическом полете на организм человека воздействует комплекс факторов, связанных с динамикой полета (ускорения, вибрация, шум, невесомость), пребыванием в герметичном помещении ограниченного объема (измененная газовая среда, гипокинезия, нервно-эмоциональное напряжение и т. д.), а также факторы космического пространства как среды обитания (космическое излучение, ультрафиолетовое излучение и др.).

    В начале и конце космического полета на организм оказывают влияние линейные ускорения . Их величины, градиент нарастания, время и направление действия в период запуска и выведения КЛА на околоземную орбиту зависят от особенностей ракетно-космического комплекса, а в период возвращения на Землю - от баллистических характеристик полета и типа КЛА. Выполнение маневров на орбите также сопровождается воздействием ускорений на организм, однако их величины при полетах современных КЛА незначительны.


    Старт космического корабля «Союз ТМА-18» к Международной космической станции с космодрома Байконур

    Основные сведения о влиянии ускорений на организм человека и способах защиты от их неблагоприятного действия были получены при исследованиях в области авиационной медицины, космическая биология и медицина лишь дополнили эти сведения. Было установлено, что пребывание в условиях невесомости, особенно длительное время, приводит к снижению устойчивости организма к действию ускорений. В связи с этим за несколько суток до спуска с орбиты космонавты переходят на специальный режим физических тренировок, а непосредственно перед спуском получают водно-солевые добавки для увеличения степени гидратации организма и объема циркулирующей крови. Разработаны специальные кресла - ложементы и противоперегрузочные костюмы, что обеспечивает повышение переносимости ускорений при возвращении космонавтов на Землю.

    Среди всех факторов космического полета постоянным и практически невоспроизводимым в лабораторных условиях является невесомость. Влияние ее на организм многообразно. Возникают как неспецифические адаптационные реакции, характерные для хронического стресса, так и разнообразные специфические изменения, обусловленные нарушением взаимодействия сенсорных систем организма, перераспределением крови в верхнюю половину тела, уменьшением динамических и практически полным снятием статических нагрузок на опорно-двигательный аппарат.

    МКС лето 2008 г.

    Обследования космонавтов и многочисленные эксперименты на животных в полетах биоспутников «Космос» позволили установить, что ведущая роль в возникновении специфических реакций, объединяемых в симптомокомплекс космической формы болезни движения (укачивание), принадлежит вестибулярному аппарату. Это связано с повышением в условиях невесомости возбудимости рецепторов отолитов и полукружных каналов и нарушением взаимодействия вестибулярного анализатора и других сенсорных систем организма. В условиях невесомости у человека и животных обнаруживаются признаки детренированности сердечно-сосудистой системы, увеличение объема крови в сосудах грудной клетки, застойные явления в печени и почках, изменение мозгового кровообращения, уменьшение объема плазмы. В связи с тем, что в условиях невесомости изменяются секреция антидиуретического гормона, альдостерона и функциональное состояние почек, развивается гипогидратация организма. При этом уменьшается содержание внеклеточной жидкости и увеличивается выведение из организма солей кальция, фосфора, азота , натрия, калия и магния. Изменения в опорно-двигательном аппарате возникают преимущественно в тех отделах, которые в обычных условиях жизнедеятельности на Земле несут наибольшую статическую нагрузку, т. е. мышцах спины и нижних конечностей, в костях нижних конечностей и позвонках. Отмечаются снижение их функциональных возможностей, замедление скорости периостального костеобразования, остеопороз губчатого вещества, декальцинация и другие изменения, которые приводят к снижению механической прочности костей.

    В начальный период адаптации к невесомости (занимает в среднем около 7 сут.) примерно у каждого второго космонавта возникают головокружение, тошнота, дискоординация движений, нарушение восприятия положения тела в пространстве, ощущение прилива крови к голове, затруднение носового дыхания, ухудшение аппетита. В ряде случаев это приводит к снижению общей работоспособности, что затрудняет выполнение профессиональных обязанностей. Уже на начальном этапе полета появляются начальные признаки изменений в мышцах и костях конечностей.

    По мере увеличения продолжительности пребывания в условиях невесомости многие неприятные ощущения исчезают или сглаживаются. Одновременно с этим практически у всех космонавтов, если не принять должных мер, прогрессируют изменения состояния сердечно-сосудистой системы, обмена веществ, мышечной и костной ткани. Для предупреждения неблагоприятных сдвигов используется широкий комплекс профилактических мер и средств: вакуумная емкость, велоэргометр, бегущая дорожка, тренировочно-нагрузочные костюмы, электромиостимулятор, тренировочные эспандеры, прием солевых добавок и т. д. Это позволяет поддерживать хорошее состояние здоровья и высокий уровень работоспособности членов экипажей в длительных космических полетах.

    Неизбежным сопутствующим фактором любого космического полета является гипокинезия - ограничение двигательной активности, которая, несмотря на интенсивные физические тренировки во время полета, приводит в условиях невесомости к общей детренированности и астенизации организма. Многочисленные исследования показали, что длительная гипокинезия, создаваемая пребыванием в постели с наклоном головного конца (-6°), оказывает на организм человека практически такое же влияние, как и длительная невесомость. Этот способ моделирования в лабораторных условиях некоторых физиологических эффектов невесомости широко использовалось в СССР и США. Максимальная длительность такого модельного эксперимента, проведенного в Институте медико-биологических проблем МЗ СССР, составила один год.

    Специфической проблемой является исследование воздействия на организм космических излучений. Дозиметрические и радиобиологические эксперименты позволили создать и внедрить в практику систему обеспечения радиационной безопасности космических полетов, которая включает средства дозиметрического контроля и локальной защиты, радиозащитные препараты (радиопротекторы).

    Орбитальная станция «МИР»

    В задачи космической биологии и медицины входит изучение биологических принципов и методов создания искусственной среды обитания на космических кораблях и станциях. Для этого отбирают живые организмы, перспективные для включения их в качестве звеньев в замкнутую экологическую систему, исследуют продуктивность и устойчивость популяций этих организмов, моделируют экспериментальные единые системы живых и неживых компонентов - биогеоценозы, определяют их функциональные характеристики и возможности практического использования в космических полетах.

    Успешно развивается и такое направление космической биологии и медицины, как экзобиология, изучающая наличие, распространение, особенности и эволюцию живой материи во Вселенной. На основании наземных модельных экспериментов и исследований в космосе получены данные, свидетельствующие о теоретической возможности существования органической материи за пределами биосферы . Проводится также программа поиска внеземных цивилизаций путем регистрации и анализа радиосигналов, идущих из космоса.

    «Союз ТМА-6»

    Экзобиология

    Одно из направлений космической биологии; занимается поисками живой материи и органических веществ в космосе и на других планетах. Основная цель экзобиологии состоит в получении прямых или косвенных данных о существовании жизни в космосе. Основанием для этого служат находки предшественников сложных органических молекул (синильной кислоты, формальдегида и др.), которые обнаружены в космическом пространстве спектроскопическими методами (всего найдено до 20 органических соединений). Методы экзобиологии различны и рассчитаны не только на обнаружение инопланетных проявлений жизни, но и на получение некоторых характеристик возможных внеземных организмов. Для предположения о существовании жизни во внеземных условиях, например, на других планетах Солнечной системы, важно выяснить способность выживания организмов при экспериментальном воспроизведении этих условий. Многие микроорганизмы могут существовать при близких к абсолютному нулю и высоких (до 80-95 °С) температуpax; их споры выдерживают глубокий вакуум и длит, высушивание. Они переносят гораздо большие дозы ионизирующего излучения, чем в космическом пространстве. Внеземные организмы, вероятно, должны обладать более высокой приспособляемостью к жизни в среде, содержащей малое количество воды. Анаэробные условия не служат препятствием для развития жизни, поэтому теоретически можно предположить существование в космосе самых различных по свойствам микроорганизмов, которые могли адаптироваться к необычным условиям, вырабатывая различные защитные приспособления. Эксперименты, осуществлённые в СССР и США, не дали доказательств существования жизни на Марсе, нет жизни на Венере и Меркурии, маловероятна она и на планетах-гигантах, а также их спутниках. В Солнечной системе жизнь есть, вероятно, лишь на Земле. Согласно одним представлениям, жизнь вне Земли возможна только на водно-углеродной основе, свойственной нашей планете. Другая точка зрения не исключает и кремниевоаммиачной основы, однако человечество пока не владеет методами обнаружения внеземных форм жизни.

    «Викинг»

    Программа «Викинг»

    Программа «Викинг» - космическая программа НАСА по изучению Марса, в частности, на предмет наличия жизни на этой планете. Программа включала запуск двух идентичных космических аппаратов - «Викинг-1» и «Викинг-2», которые должны были провести исследования на орбите и на поверхности Марса. Программа «Викинг» была кульминацией серии миссий по изучению Марса начало которым положил в 1964 г. «Маринер-4», продолжены «Маринер-6» и «Маринер-7», пролетевших в 1969, и орбитальными миссиями «Маринер-9» в 1971 и 1972 гг. «Викинги» заняли место в истории освоения Марса как первые, благополучно севшие на поверхность, американские космические аппараты. Это была одна из наиболее информативных и успешных миссий на красную планету, хотя ей и не удалось обнаружить жизнь на Марсе.

    Оба аппарата были запущены в 1975 г. с мыса Канаверал, штат Флорида. Перед полётом спускаемые аппараты были тщательно стерилизованы для предотвращения заражения Марса земными формами жизни. Время полета заняло немногим меньше года и к Марсу прибыли в 1976 г. Продолжительность миссий «Викинг» планировалась в 90 дней после приземления, но каждый аппарат проработал значительно больше этого срока. Орбитальный аппарат «Викинг-1» проработал до 7 августа 1980 г., спускаемый аппарат - до 11 ноября 1982 г. Орбитальный аппарат «Викинг-2» функционировал до 25 июля 1978 г., спускаемый аппарат - до 11 апреля 1980 г.

    Заснеженная пустыня на Марсе. Снимок «Викинга-2»

    Программа «БИОН»

    Программа «БИОН» включает в себя комплексные исследования на животных и растительных организмах в полетах специализированных спутников (биоспутников) в интересах космической биологии, медицины и биотехнологии. С 1973 по 1996 г. запущено в космос 11 биоспутников.

    Ведущее научное учреждение: ГНЦ РФ - Институт медико-биологически проблем РАН (г. Москва)
    Конструкторское бюро: ГНП РКЦ «ЦСКБ-Прогресс» (г. Самара)
    Длительность полетов: от 5 до 22,5 сут.
    Место запуска: космодром Плесецк
    Район приземления: Казахстан
    Страны-участницы: СССР, Россия, Болгария, Венгрия, Германия, Канада, Китай, Нидерланды, Польша, Румыния, США, Франция, Чехословакия

    Исследования на крысах и обезьянах в полетах биоспутников показали, что пребывание в невесомости приводит к существенным, но обратимым функциональным, структурным и метаболическим изменениям в мышцах, костях, миокарде и нейро-сенсорной системе млекопитающих. Описана феноменология и изучен механизм развития этих изменений.

    Впервые в полетах биоспутников «БИОН» реализована на практике идея о создании искусственной силы тяжести (ИСТ). В экспериментах на крысах установлено, что ИСТ, создаваемая вращением животных на центрифуге, препятствует развитию неблагоприятных изменений в мышцах, костях и миокарде.

    В рамках Федеральной космической программы России на период 2006-2015 гг. в разделе «Космические средства для фундаментальных космических исследований » запланировано продолжение программы «БИОН», запуски космических аппаратов «БИОН-М» намечены на 2010, 2013 и 2016 гг.

    «БИОН»

    Перспективы развития исследований

    Современный этап освоения и изучения космического пространства характеризуется постепенным переходом от длительных орбитальных полетов к межпланетным перелетам, ближайшим из которых видится экспедиция на Марс . В этом случае ситуация меняется коренным образом. Она меняется не только объективно, что связано со значительным увеличением длительности пребывания в космосе, посадкой на другую планету и возвращением на Землю, но и, что очень важно - субъективно, поскольку, покинув уже ставшую привычной земную орбиту, космонавты останутся (в весьма небольшой по численности группе своих коллег) «одинокими» на необъятных просторах Вселенной.

    Вместе с тем, возникают принципиально новые проблемы, связанные с резким возрастанием интенсивности космической радиации, необходимостью использования возобновляемых источников кислорода, воды и пищи, и главное, решением психологических и медицинских задач.

    DIV_ADBLOCK380">

    Трудность управления такой системой в ограниченном герметически замкнутом объеме настолько велика, что не приходится надеяться на ее скорое внедрение в практику. По всей вероятности переход на биологическую систему жизнеобеспечения будет происходить постепенно по мере готовности ее отдельных звеньев. На первом этапе развития БСЖО, очевидно, произойдет замена физико-химического метода получения кислорода и утилизации углекислого газа - на биологический. Как известно, основные «поставщики» кислорода - это высшие растения и фотосинтезирующие одноклеточные организмы. Более сложной задачей является пополнение запасов воды и пищи.

    Питьевая вода очевидно еще очень долгое время будет иметь «земное происхождение», а техническая (используемая для хозяйственных нужд) уже сейчас восполняется за счет регенерации конденсата атмосферной влаги (КДА), мочи и других источников.

    Безусловно, главный компонент будущей замкнутой экологической системы - растения. Исследования на высших растениях и фотосинтезирующих одноклеточных организмах на борту космических аппаратов показали, что условиях космического полета, растения проходят все стадии развития, начиная с прорастания семян до образования первичных органов, цветения, оплодотворения и созревания нового поколения семян. Таким образом, была экспериментально доказана принципиальная возможность осуществления полного цикла развития растений (от семени до семени) в условиях микрогравитации. Результаты космических экспериментов были настолько обнадеживающими, что позволили уже в начале 80-х годов сделать вывод о том, что разработка систем биологического жизнеобеспечения и создание на этой основе экологически замкнутой системы в ограниченном герметическом объеме является не столь уж сложной задачей. Однако с течением времени стало очевидно, что проблема не может быть решена окончательно, по крайней мере, до тех пор, пока не будут определены (расчетным или экспериментальным путем) основные параметры, позволяющие сбалансировать массо - и энергопотоки этой системы.

    Для возобновления запасов пищи необходимо также ввести в систему животных. Разумеется, на первых этапах это должны быть «малогабаритные» представители животного мира - моллюски, рыбы, птицы, а позже, возможно кролики и другие млекопитающие.

    Таким образом, космонавтам во время межпланетных перелетов необходимо не только научиться выращивать растения, содержать животных и культивировать микроорганизмы, но и разработать надежный, способ управления «космическим ковчегом». А для этого, сначала надо выяснить, как растет и развивается отдельно взятый организм в условиях космического полета, а затем какие требования предъявляет сообществу каждый отдельно взятый элемент замкнутой экологической системы.

    Моей основной задачей в исследовательской работе было выяснить, какой интересный и захватывающий пусть прошли космические исследования и какой долгий путь им ещё предстоит пройти!

    Если только себе представить, какое разнообразие всего живого есть на нашей планете, то что можно предположить тогда о космосе…

    Вселенная настолько большая и неизвестная, что такой вид исследований жизненно важен для нас, живущих на планете Земля. А мы ведь только в самом начале пути и нам предстоит столько всего познать и увидеть!

    На протяжении всего того времени, когда я делал эту работу, узнал столько всего интересного, о чем никогда не подозревал, узнал прекрасных исследователей как Карл Саган, узнал о интереснейших космических программах, проведенных в XX веке, как США, так и в СССР, узнал много о современных программах, как «БИОН», и много всего другого.

    Исследования продолжаются…

    Список использованных источников

    Большая Детская Энциклопедия Вселенная: Научно-популярное издание. - Русское энциклопедическое товарищество, 1999. Сайт http://spacembi. *****/ Большая энциклопедия Вселенная. - М. : Изд-во «Астрель», 1999.

    4. Энциклопедия Вселенная (“РОСМЭН”)

    5. Сайт Wikipedia (картинки)

    6.Космос на рубеже тысячелетий. Документы и материалы. М., Международные отношения (2000г.)

    Приложение.

    “Марссоперенос”

    "Маpссоперенос" Отработка одного из звеньев будущей биолого-технической системы жизнеобеспечения космонавтов.

    Цель: Получение новых данных о процессах газо-жидкостного обеспечения в корнеобитаемых средах в условиях космического полета

    Задачи: Экспериментальное определение коэффициентов капиллярной диффузии влаги и газов

    Ожидаемые результаты: Создание установки с корнеобитаемой средой для выращивания растений применительно к условиям микрогравитации

    · Комплект "Кювета экспериментальная" для определения характеристик влагопереноса (скорости перемещения фронта пропитки и влагосодержания в отдельных зонах)

      Видеокомплекс LIV для видеосъемки движения фронта пропитки

    Цель: Использование новых компьютерных технологий для повышения комфортности пребывания космонавта в условиях длительного космического полета.

    Задачи: Активизация конкретных областей мозга, ответственных за зрительные ассоциации космонавта, связанные с родными местами и семьей на Земле с дальнейшим повышением его работоспособности. Анализ состояния космонавта на орбите путем тестирования по специальным методикам.

    Используемая научная аппаратура:

    Блок EGE2 (индивидуальный жесткий диск космонавта с альбомом фотографий и опросником)

    "VEST" Получение данных для разработки мер профилактики неблагоприятного воздействия условий полета на здоровье и работоспособность экипажа МКС.

    Цель: Оценка новой интегрированной системы одежды из различных типов материалов для использования в условиях космического полета.

    Задачи:

      ношение одежды "VEST", специально разработанной для полета итальянского космонавта Р. Виттори на РС МКС; получение отзыва космонавта в отношении психологического и физиологического самочувствия, то есть комфортности (удобства), носкости одежды; ее эстетики; эффективности теплоустойчивости и физической гигиены на борту станции.

    Ожидаемые результаты: Подтверждение функциональности новой интегрированной системы одежды "VEST", в том числе её эргономических показателей в условиях космического полета, что позволит уменьшить массу и объем одежды, планируемой к использованию в долгосрочных космических полетах на МКС.

    Запуск в 1957 г. первого искусственного спутника Земли и дальнейшее развитие астронавтики поставили перед различными областями науки большие и сложные проблемы. Возникли новые отрасли знания. Одна из них - космическая биология.

    Еще в 1908 г. К. Э. Циолковский высказывал мысль, что после создания искусственного спутника Земли, способного без повреждения возвратиться на Землю, на очередь встанет решение биологических проблем, связанных с обеспечением жизни экипажей космических кораблей. Действительно, прежде чем первый землянин - гражданин Советского Союза Юрий Алексеевич Гагарин - отправился в космический полет на корабле «Восток-1», были проведены обширные медико-биологические исследования на искусственных спутниках Земли и космических кораблях. На них в космический полет отправлялись морские свинки, мыши, собаки, высшие растения и водоросли (хлорелла), различные микроорганизмы, семена растений, изолированные культуры тканей человека и кролика и другие биологические объекты. Эти эксперименты позволили ученым сделать вывод - жизнь в условиях космического полета (по крайней мере не слишком длительного) возможна. Это было первое важное достижение новой области естествознания - космической биологии.

    Мыши проходят испытание в условиях невесомости.

    Каковы же задачи космической биологии? Что является предметом ее исследований? В чем особенность методов, которыми она пользуется? Ответим сначала на последний вопрос. Помимо физиологических, генетических, радиобиологических, микробиологических и других биологических методов исследования космическая биология широко использует достижения физики, химии, астрономии, геофизики, радиоэлектроники и многих других наук.

    Результаты любых измерений в полете необходимо передавать по радиотелеметрическим линиям. Поэтому биологическая радиотелеметрия (биотелеметрия) - основной метод исследования. Она же является средством контроля во время проведения опытов в космическом пространстве. Использование радиотелеметрии накладывает определенный отпечаток на методику и технику биологических экспериментов. То, что в обычных земных условиях можно довольно легко учесть или измерить (например, посеять культуры микроорганизмов, взять пробу для анализа, зафиксировать ее, измерить скорость роста растений или бактерий, определить интенсивность дыхания, частоту пульса и т. д.), в космосе превращается в сложную научную и техническую проблему. Особенно, если эксперимент проводится на непилотируемых спутниках Земли или космических кораблях без экипажа. В этом случае все воздействия на изучаемый живой объект и все измеряемые величины необходимо с помощью соответствующих датчиков и радиотехнических устройств превратить в электрические сигналы, которые выполняют разную роль. Одни из них могут служить командой для какой-либо манипуляции с растениями, животными или другими объектами исследования, другие нести информацию о состоянии изучаемого объекта или процесса.

    Таким образом, методы космической биологии отличаются высокой степенью автоматизации, тесно связаны с радиоэлектроникой и электротехникой, с радиотелеметрией и вычислительной техникой. Исследователю необходимо хорошо знать все эти технические средства, и, кроме того, ему необходимо глубокое знание механизмов различных биологических процессов.

    Каковы же проблемы, которые стоят перед космической биологией? Главнейшие из них три: 1. Изучение влияния условий полета в космос и факторов космического пространства на живые организмы Земли. 2. Исследование биологических основ обеспечения жизни в условиях космических полетов, на внеземных и планетных станциях. 3. Поиски живой материи и органических веществ в мировом пространстве и изучение особенностей и форм внеземной жизни. Расскажем о каждой из них.

    Суздальцева Мария

    —Чтобы понять какова роль биологии в космических исследованиях мы должны обратиться к космической биологии.

    —Цель работы: изучить влияние на живой организм комплекса необычных факторов внешней среды.

    —1.Изучить особенность космической биологии.

    —2.На примере живых организмов, определить значение лабораторных и лётных экспериментов.

    —3.Установить степень гуманности экспериментов.

    4.Установить значение космической биологии.
    Гипотеза: Возможно ли с помощью космической биологии разведать новые космические трассы и организовать космический туризм.

    Скачать:

    Предварительный просмотр:

    Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


    Подписи к слайдам:

    Исследовательская работа Значение биологии в космических исследованиях Выполнила: Суздальцева Мария Ученица МАОУ «Гимназия имени Н.В.Пушкова » Руководитель: Учитель биологии Омельченко Ю.Е

    Обоснование те мы: Чтобы понять какова роль биологии в космических исследованиях мы должны обратиться к космической биологии. Цель работы: изучить влияние на живой организм комплекса необычных факторов внешней среды. Задачи: 1.Изучить особенность космической биологии. 2.На примере живых организмов, определить значение лабораторных и лётных экспериментов. 3.Установить степень гуманности экспериментов. 4.Установить значение космической биологии. Гипотеза: Возможно ли с помощью космической биологии разведать новые космические трассы и организовать космический туризм.

    Введение. Космическая биология-это комплекс преимущественно биологических наук, изучающих: 1) особенности жизнедеятельности земных организмов в условиях космического пространства и при полётах на космических летательных аппаратах 2) принципы построения биологических систем обеспечения жизнедеятельности членов экипажей космических кораблей и станций 3) внеземные формы жизни.

    Космическая биология - синтетическая наука, собравшая в единое целое достижения различных разделов биологии, авиационной медицины, астрономии, геофизики, радиоэлектроники и многих др. наук и создавшая на их основе собственные методы исследования. Работы по космической биологии ведутся на различных видах живых организмов, начиная с вирусов и заканчивая млекопитающими.

    Основная часть. Первоочередная задача космической биологии - изучение влияния факторов космического полёта (ускорение, вибрация, невесомость, измененная газовая среда, ограниченная подвижность и полная изоляция в замкнутых герметичных объёмах и др.) и космического пространства (вакуум, радиация, уменьшенная напряжённость магнитного поля и др.).

    Основная часть. Исследования по космической биологии ведутся в лабораторных экспериментах, в той или иной мере воспроизводящих влияние отдельных факторов космического полёта и космического пространства. Однако наиболее существенное значение имеют лётные биологические эксперименты, в ходе которых можно изучить влияние на живой организм комплекса необычных факторов внешней среды.

    На искусственных спутниках Земли и космических кораблях в полет отправлялись морские свинки, мыши, собаки, высшие растения и водоросли (хлорелла), различные микроорганизмы, семена растений, изолированные культуры тканей человека и кролика и другие биологические объекты.

    На участках выхода на орбиту у животных обнаруживалось ускорение учащения пульса и дыхания, которые постепенно исчезали после перехода корабля на орбитальный полёт.

    Нормализация пульса после воздействия ускорений в невесомости происходит значительно медленнее, чем после испытаний на центрифуге в условиях Земли.

    Анализ двигательной активности собак показал довольно быструю адаптацию к необычным условиям невесомости и восстановление способности к координированным движениям. Такие же результаты были получены и в экспериментах на обезьянах. Исследованиями условных рефлексов у крыс и морских свинок после возвращения их из космического полёта установлено отсутствие изменений по сравнению с предполётными опытами.

    Важными для дальнейшего развития экофизиологического направления исследований явились эксперименты на советском биоспутнике "Космос-110" с двумя собаками на борту и на американском биоспутнике "Биос-3", на борту которого находилась обезьяна.

    Генетические исследования, проведённые в орбитальных космических полётах, показали, что пребывание в космическом пространстве оказывает стимулирующий эффект на сухие семена лука и нигеллы.

    В результате проведённых биологических исследований на высотных и баллистических ракетах, ИСЗ, ККС и др. космических летательных аппаратах установлено, что человек может жить и работать в условиях космического полёта сравнительно продолжительное время.

    Выводы: 1.В ходе работы я выяснила,что исследования по космической биологии позволили разработать ряд защитных мероприятий и подготовили возможность безопасного полёта в космос человека, что и было осуществлено полётами советских, а затем и американских кораблей с людьми на борту. 2.Убедилась,что и сследования в этой области будут и впредь особенно нужны для биологической разведки новых космических трасс. Это потребует разработки новых методов биотелеметрии (способ дистанционного исследования биологических явлений и измерения биологических показателей), создания вживляемых устройств для малой телеметрии (совокупность технологий, позволяющая производить удалённые измерения и сбор информации для предоставления оператору или пользователю), превращения различных видов возникающей в организме энергии в необходимую для питания таких устройств электрическую энергию, новых методов "сжатия" информации и др. 3. Я изучаю, и буду продолжать изучать научную литературу по данной проблеме; Я собираюсь продолжить работу по данной теме. Потому, что убеждена,что космическая биология сыграет важную роль и в разработке необходимых для длительных полётов бикомплексов.

    Список литературы: Литература 1 . Авиакосмическая и экологическая медицина. - 2000. – T. 34, N 2. 2. Копаладзе Р.А. // Регламентация экспериментов на животных - этика, законодательства, альтернативы: Обзор / Под ред. Н.А. Горбуновой. - M., 1998. 3 . Лукьянов А.С., Лукьянова Л.Л., Чернавская H.M., Гилязов С.Ф. Биоэтика. Альтернативы экспериментам на животных. - M., 1996. 4 . Павлова Т.Н. Биоэтика в высшей школе. - M., 1997. 5 . Приемы работы с экспериментальными животными: Методические рекомендации. - M., 1989. 6 . Санитарные правила по устройству, оборудованию и содержанию экспериментально-биологических клиник (вивариев). - M., 1973. 7 . Фоссе P. // Лаб. животные. - 1991. - T. 1, N 1. - С. 39-45. 8 . Ховард -Джонс H. // Хроника ВОЗ. - 1985. - T. 39. - С. 3-8. 9 . Швейцер А. Упадок и возрождение культуры. - M., 1993. 10 . Guide for the Care and Use of Laboratory Animals. - Washington: National Academy Press, 1996. 11 . Regan T. The Case for Animal Rights. - London; N.-Y., 1984.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Подобные документы

      Общая характеристика науки биологии. Этапы развития биологии. Открытие фундаментальных законов наследственности. Клеточная теория, законы наследственности, достижения биохимии, биофизики и молекулярной биологии. Вопрос о функциях живого вещества.

      контрольная работа , добавлен 25.02.2012

      Методология современной биологии. Философско-методологические проблемы биологии. Этапы трансформации представлений о месте и роли биологии в системе научного познания. Понятие биологической реальности. Роль философской рефлексии в развитии наук о жизни.

      реферат , добавлен 30.01.2010

      Зарождение биологии как науки. Идеи, принципы и понятия биологии XVIII в. Утверждение теории эволюции Ч. Дарвина и становление учения о наследственности. Эволюционные воззрения Ламарка, Дарвина, Менделя. Эволюция полигенных систем и генетический дрейф.

      курсовая работа , добавлен 07.01.2011

      Влияние наглядности на качество усвоения знаний учащихся по биологии на всех этапах урока. История возникновения понятия "наглядности", как дидактического принципа обучения. Классификация наглядных пособий по биологии и методика их применения на уроках.

      курсовая работа , добавлен 03.05.2009

      Теоретические основы, предмет, объект и закономерности биологии. Сущность, анализ и доказательство аксиом теоретической биологии, обобщенных Б.М. Медниковым и характеризующих жизнь и отличающуюся от нее нежизнь. Особенности генетической теории развития.

      реферат , добавлен 28.05.2010

      Понятие увеличительных приборов (лупа, микроскоп), их назначение и устройство. Основные функциональные и конструктивно-технологические части современного микроскопа, используемого на уроках биологии. Проведение лабораторных работ на уроках биологии.

      курсовая работа , добавлен 18.02.2011

      Исследование биографии и научной деятельности Чарльза Дарвина, основоположника эволюционной биологии. Обоснование гипотезы происхождения человека от обезьяноподобного предка. Основные положения эволюционного учения. Сфера действия естественного отбора.

      презентация , добавлен 26.11.2016

      Использование водорослей в космосе. Отрицательные стороны. Наука, которая занимается проблемами биологии в космосе - называется - космическая биология. Одна из проблем, которых применение водорослей на блага человечества в покорении космоса.