Войти
Логопедический портал
  • Герои пьесы "Три сестры" Чехова: характеристика героев Смотреть что такое "сестры прозоровы" в других словарях
  • Классификация органических соединений по функциональным группам
  • Различные виды уравнений прямой
  • Смотреть что такое "Третья книга Ездры" в других словарях 3 ездры
  • Взаимосвязь темперамента с экстраверсией - интроверсией
  • Правила проведения тестирования Основные положения тестирования
  • Структурная организация и функции ядрышка. Ядро клетки: функции и структура Образование ядрышка

    Структурная организация и функции ядрышка. Ядро клетки: функции и структура Образование ядрышка

    С помощью светового микроскопа в ядре интерфазной клетки легче всего выявляется ядрышко . Многие детали его морфологии были изучены хорошо, но его функции и роль в клетке оставались неизвестными до 60-х г. Размер ядрышка может меняться не только в разных клетках одного организма, но и в одной клетке.
    В растительной клетке, продуцирующей большое количество белков, ядрышко может составлять четверть объема всего ядра. В покоящихся клетках ядрышко очень мало. Размер и число ядрышек меняются в зависимости от фазы клеточного цикла. В начале деления клетки ядрышки уменьшаются в размерах, затем они исчезают совсем, появляясь к концу деления, при этом в ядре наблюдается несколько ядрышек.
    После деления клетки число ядрышек уменьшается до одного, а его размер увеличивается. Функции ядрышка были выявлены с помощью метода меченых атомов, для чего использовали уридин, меченый тритием. Уридин - предшественник урацила, который входит в состав РНК.
    Через различные промежутки времени, прошедшие со времени включения метки, клеточное содержимое фракционировали и выделяли ядрышки. Эксперименты показали, что ядрышко - это центр образования рибосом. В составе ядрышка были выявлены большие петли ДНК в составе хромосом, содержащие гены рибосомной РНК - ядрышковые организаторы. В клетках каждого вида существует не менее двух хромосом, имеющих в своем составе такие гены. Эти гены располагаются комплексами из нескольких идентичных копий - кластерами.
    В клетках человека содержится около 200 копий гена рибосомальной РНК на гаплоидный геном, которые распределены кластерами по пяти хромосомам, соответственно в диплоидном наборе хромосом ядрышковых организоторов будет 10. Они расположены в виде серии повторяющихся последовательностей, расположенных одна за другой, тандемно.
    Тандемные повторы разделены особым участком ДНК - спейсером, который не считывается вместе с рибосомальными генами. Большое количество генов, контролирующих синтез р-РНК, связано с тем, что эукариотическая клетка должна за короткое время синтезировать огромное количество молекул белка, и, следовательно, должна иметь большое число рибосом, примерно 10 млн на одну генерацию.

    Электронная микроскопия показала, что ядрышко не имеет мембраны. Это высокоорганизованная структура внутри ядра. Оно содержит три дискретные зоны: слабоокрашенный компонент, гранулярный компонент и фибриллярный компонент. Эти зоны имеют непосредственное отношение к функциям ядрышка. Слабоокрашенный компонент содержит ДНК из области ядрышкового организатора хромосомы. Фибриллярный компонент состоит из множества фибрилл диаметром 5 нм, которые представляют собой молекулы РНК, считанные с ДНК ядрышковых организаторов в процессе транскрипции (РНК-транскрипты) . Гранулярный компонент ядрышка содержит частицы диаметром 15 нм, которые являются предшественниками рибосомных частиц. Радиоактивное мечение показало, что со времени введения метки до образования субъединиц рибосом проходит 30 мин, после чего эти субъединицы выходят из ядра. Сборка функционально зрелых рибосом происходит в цитоплазме клетки.

  • Ядрышко – сферическое образование (1-5 мкм в диаметре), присутствующее практически во всех живых клетках эукариотических организмов. В ядре видно одно или несколько обычно округлой формы телец сильно преломляющих свет, – это ядрышко, или нуклеола (nucleolus). Ядрышко хорошо воспринимает основные красители и располагается среди хроматина. Базофилия ядрышка определяется тем, что ядрышки богаты РНК. Ядрышко – самая плотная структура ядра – является производным хромосомы, одним из ее локусов с наиболее высокой концентрацией и активностью синтеза РНК в интерфазе. Образование ядрышек и их число связаны с активностью и числом определенных участков хромосом - ядрышковых организаторов, которые расположены большей частью в зонах вторичных перетяжек, оно не является самостоятельной структурой или органеллой. У человека такие участки есть в 13-й, 14-й, 15-й, 21-й и 22-й парах хромосом.

    Функция ядрышек – синтез рРНК и образование субъединиц рибосом.

    Ядрышко неоднородно по своему строению: в световом микроскопе можно видеть его тонковолокнистую организацию. В электронном микроскопе выявляются два основных компонента: гранулярный и фибриллярный. Диаметр гранул около 15-20нм, толщина фибрилл - 6-8нм. Гранулы представляют собой созревающие субъединицы рибосом.

    Гранулярный компонент локализуется в периферической части ядрышка и представляет собой скопление субъединиц рибосом.

    Фибриллярный компонент локализуется в центральной части ядрышка и представляет собой нити рибонуклеопротеида предшественников рибосом.

    Ультраструктура ядрышек зависит от активности синтеза РНК: при высоком уровне синтеза рРНК в ядрышке выявляется большое число гранул, при прекращении синтеза количество гранул снижается, ядрышки превращаются в плотные фибриллярные тельца базофильной природы.

    Схему участия ядрышек в синтезе цитоплазматических белков можно представить следующим образом:

    Рисунок? – СХЕМА СИНТЕЗА РИБОСОМ В КЛЕТКАХ ЭУКАРИОТ

    Схема синтеза рибосом в клетках эукариот.
    1. Синтез мРНК рибосомных белков РНК полимеразой II. 2. Экспорт мРНК из ядра. 3. Узнавание мРНК рибосомой и 4. синтез рибосомных белков. 5. Синтез предшественника рРНК (45S - предшественник) РНК полимеразой I. 6. Синтез 5S pРНК РНК полимеразой III. 7. Сборка большой рибонуклеопротеидной частицы, включающей 45S-предшественник, импортированные из цитоплазмы рибосомные белки, а также специальные ядрышковые белки и РНК, принимающие участие в созревании рибосомных субчастиц. 8. Присоединение 5S рРНК, нарезание предшественника и отделение малой рибосомной субчастицы. 9. Дозревание большой субчастицы, высвобождение ядрышковых белков и РНК. 10. Выход рибосомных субчастиц из ядра. 11. Вовлечение их в трансляцию.



    Микрофотографии ядрышка (по данным электронной микроскопии)

    Рисунок? – Электронная микрофотография ядра с ядрышком

    1- Фибриллярный компонент; 2- гранулярный компонент; 3- околоядрышковый гетерохроматин; 4-кариоплазма; 5- ядерная мембрана.

    Рисунок? – РНК в цитоплазме и ядрышках клеток подчелюстной железы.

    Окраска по Браше, Х400

    1 цитоплазма; 2 ядрышки. Обе эти структуры богаты РНК (главным образом, за счет рРНК - свободной или в составе рибосом) и потому при окраске по Браше красятся в малиновый цвет.

    ЯДРЫШКО (nucleolus) - составная часть ядра клетки, представляющая собой оптически плотное, сильно преломляющее свет тельце. В современной цитологии (см.) ядрышко признается местом синтеза и накопления всех рибосомных РНК (рРНК), кроме 5S-PHK (см. Рибосомы).

    Ядрышко впервые описано в 1838- 1839 годы М. Шлейденом в растительных и Т. Шванном - в животных клетках.

    Число ядрышек, их размеры и форма варьируют в зависимости от вида клеток. Наиболее часто встречаются ядрышки сферической формы. Ядрышка способны сливаться друг с другом, поэтому в ядре могут присутствовать либо несколько мелких ядрышек, либо одно крупное, либо несколько ядрышек разной величины. В клетках с низким уровнем синтеза белка ядрышки невелики или не выявляются. Активизация синтеза белков сопряжена с увеличением общего объема ядрышек. Во многих случаях общий объем ядрышек также коррелирует с числом хромосомных наборов клетки (см. Хромосомный набор).

    Ядрышко не имеет оболочки и окружено слоем конденсированного хроматина (см.) - так называемого околоядрышкового, или перинуклеолярного, гетерохроматина. С помощью цитохимических методов в ядрышках выявляют РНК и белки, кислые и основные. Белки ядрышка включают ферменты, участвующие в синтезе рибосомных РНК. При окраске препаратов ядрышка, как правило, прокрашиваются основным красителем. В яйцеклетках некоторых червей, моллюсков и членистоногих встречаются сложные ядрышки (амфинуклеолы), состоящие из двух частей, одна из которых окрашивается основным красителем, другая (белковое тельце) - кислым. При прекращении синтеза рРНК в начале митоза (см.) ядрышка исчезают (исключение составляют ядрышко некоторых простейших), а при восстановлении синтеза рРНК в телофазе митоза формируются вновь на участках хромосом (см.), называемых организаторами ядрышка. В клетках человека организаторы ядрышка локализованы в области вторичных перетяжек коротких плеч хромосом 13, 14, 15, 21 и 22. При активном синтезе белка клеткой организаторы ядрышка обычно редуплицируются, и количество их достигает нескольких сотен копий. В ооцитах животных (например, амфибий) такие копии могут отрываться от хромосом и формировать множественные краевые ядрышки яйцеклеток.

    Организаторы ядрышка состоят из повторяющихся блоков транскрибируемых последовательностей ДНК, включающих гены 5,8S-PHK, 28S-РНК и 18S-pPHK, разделенные двумя некодирующими рРНК участками. Транскрибируемые последовательности ДНК чередуются с нет-ранскрибируемыми последовательностями (спейсерами). Синтез рРНК, или транскрипция (см.), осуществляется специальным ферментом - РНК-полимеразой I. Первоначально синтезируются гигантские молекулы 45S-PHK; в ходе созревания (процессинга) из этих молекул с помощью специальных ферментов образуются все три вида рРНК; этот процесс протекает в несколько этапов. Избыточные, не входящие в состав рРНК участки 45S-PHK распадаются в ядре, а зрелые рРНК транспортируются в цитоплазму, где молекулы 5,8S-рРНК и 28S-pPHK вместе с синтезированной в ядре вне ядрышка молекулой 5S-pPHK и дополнительными белками формируют большую единицу рибосомы, а молекула 18S-pPHK входит в состав ее малой субъединицы. Согласно современным представлениям рР НК и их предшественники на всех этапах процессинга присутствуют в ядре в виде комплексов с белками - рибонуклеопротеидов. Присоединение белков к молекуле 45 S-РНК происходит по мере ее синтеза, так что к моменту завершения синтеза молекула уже представляет собой рибонуклеопротеид.

    Ультраструктура ядрышка отражает последовательные этапы синтеза рРНК на матрицах организаторов ядрышка. На электронограммах в ядрышках различают фибриллярный компонент (нуклеолонему), гранулярный компонент и аморфный матрикс (рис.). Нуклеолонема представляет собой нитчатую структуру толщиной 150- 200 нм; она состоит из гранул диаметром около 15 нм и рыхло расположенных фибрилл толщиной 4-8 нм. На срезах нуклеолонемы видны относительно светлые участки - так назывыаемые фибриллярные центры. Предполагают, что эти центры образованы нетранскрибируемыми областями ДНК организаторов ядрышка, находящимися в комплексе с аргенто-фильными белками. Фибриллярные центры окружены петлями транскрибируемых цепей ДНК с синтезирующимися на них рибонуклеопротеидами 45S-PHK. Видимо, последние и выявляются на электронограммах в виде фибрилл.

    Гранулярный компонент ядрышка содержит гранулы рибонуклеопротеидов, представляющие собой различные продукты процессинга рРНК. Среди них иногда удается различить темные гранулы рибонуклеопротеидного предшественника 28S-pPHK (32S-pPHK) и более светлые зерна, содержащие зрелую 28S-pPHK. Аморфный матрикс ядрышка практически не отличается от ядерного сока (см. Ядро клетки).

    Таким образом, ядрышко представляет собой динамичную, постоянно обновляющуюся структуру. Это зона ядра клетки, где синтезируются и созревают рРНК и откуда они транспортируются в цитоплазму.

    Пути выхода рибонуклеопротеидов из ядрышка в цитоплазму изучены недостаточно. Считают, что они проходят через поросомы ядерной оболочки (см. Ядро клетки) или через участки ее локального разрушения. Связи ядрышка с оболочкой ядра в клетках разных типов осуществляются как в виде непосредственных контактов, так и с помощью каналов, образующихся вследствие инвагинации оболочки ядра. Через подобные связи происходит также обмен веществ между ядрышками и цитоплазмой.

    При патологических процессах отмечают разнообразные изменения ядрышек. Так, при малигнизации клеток наблюдается увеличение числа и размеров ядрышек, при выраженных дистрофических процессах в клетке - так называемая сегрегация ядрышек. При сегрегации происходит перераспределение гранулярного и фибриллярного компонентов. При выраженной сегрегации ядрышек нуклеолонема может исчезать, а в гранулярном компоненте образуются темная и светлая зоны - так называемые шапочки, или кэпы. Эти структурные изменения отражают нарушения синтеза, процесса созревания и внутриядрышкового транспорта рРНК.

    Библиогр.: Заварзин А. А. и Харазова А. Д. Основы общей цитологии, с. 183, Д., 1982; Ченцов Ю. С. Общая цитология, М., 1984; Ченцов Ю. С. и Поляков В. Ю, Ультраструктура клеточного ядра, с. 50, М., 1974; В о u t e i 1 1 e М. a. D и-puy-Go in А. М. 3-dimensional analysis of the interphase nucleus, Biol. Cell, v. 45, p. 455, 1982; Busch H. a. Smetana K. The nucleolus, N. Y.- L., 1970; Hadjiolov A. A. The nucleolus and ribosome biogenesis, Wien - N. Y., 1985, bibliogr.


    Ядрышко (nucleolus, plasmosome) - плотное образование, выявляемое в интерфазных ядрах эукариотических клеток, которое формируется на определенных локусах хромосом (ядрышковым организатором). Ядрышко - производное хромосомы, один из ее локусов, активно функционирующий в интерфазе. В клетке обычно содержится 1-2 Я., иногда - более 2. Основная функция Я. - синтез рибосом; в нем содержатся факторы, участвующие в транскрипции рибосомных генов, процессинге пре-рРНК и сборке прерибосомных частиц. Некоторые белки Я. полифункциональны и участвуют в ряде иных процессов в клетке, таких как апоптоз , регуляция клеточного цикла и др.

    Ядрышко - высокоорганизованная структура внутри ядра. В составе ядрышка выявляются большие петли ДНК, содержащие гены pPНК , которые с необычайно высокой скоростью транскрибируются РНК-полимеразой I . Эти петли носят название -"ядрышковые организаторы ".

    В отличие от цитоплазматических оргнанелл ядрышко не имеет мембраны, которое окружало бы его содержимое. Похоже, что оно образовано недозрелыми предшественниками рибосом, специфически связанными друг с другом неизвестным образом. ( рис. ядрышко) Размер ядрышка отражает степень его функциональной активности, которая широко варьирует в различных клетках и может изменяться в индивидуальной клетке.

    В ядрышке происходят транскрипция рибосомных генов, процессинг предшественников рРНК и сборка прерибосомных частиц из рибосомных белков и рРНК. Механизмы формирования ядрышка не ясны. В соответствии с одной из гипотез, ядрышко рассматривают как нуклеопротеиновый комплекс, спонтанно появляющийся в результате объединения регуляторных белково-нуклеиновых комплексов, возникающих на повторяющихся последовательностях рДНК во время их транскрипции. Действительно, гены рРНК человека организованы в виде 250 тандемно повторяющихся последовательностей длиной в 44 т.п.о. каждая, которые вместе с ассоциированными с ними белками формируют сердцевину ядрышка. Оно заполняется другими компонентами во время процессинга рРНК и сборки рибосомных субчастиц.

    Морфологически в ядрышке различают три основные зоны: фибриллярный центр , окруженный плотной фибриллярной и гранулярной областями .

    На электронной микрофотографии ядрышка можно различить эти три дискретные зоны:

    1) слабоокрашенный компенент, содержащий ДНК из области ядрышкового организатора хромосомы,

    2) плотный фибриллярый компонент, состоящий из множества тонких (5 нм) рибонуклепротеиновых фибрилл, представляющих собой РНК-транскрипты и

    3) гранулярный компонент, в состав которого входят частицы диаметром 15 нм, представляющие наиболее зрелые предшественники рибосомных частиц.

    С помощью специфических антител и гибридизационных зондов было установлено, что в фибриллярном центре ядрышка локализованы гены рРНК , РНК-полимераза I , транскрипционный фактор UBF и топоизомераза I . Полагают, что фибриллярный центр ядрышка является местом сборки регуляторных нуклеопротеиновых комплексов, необходимых для транскрипции генов рРНК. Плотный фибриллярный компонент, окружающий центр ядрышка, представлен растущими цепями предшественников рРНК и ассоциированными с ними белками, участвующими в процессинге. В гранулярной области ядрышка обнаруживают зрелые 28S и 18S рРНК, частично процессированные РНК, а также продукты сборки рибосомных субчастиц. Интермедиаты сборки рибосом представлены частицами диаметром 15-20 нм. Перенос прерибосомных субчастиц к цитоплазме, по-видимому, обеспечивают специфические белки, которые перемещаются от ядрышка к оболочке ядра. Благодаря иерархии в структурно-функциональной организации ядрышка в виде отдельных морфологически различимых компартментов его часто используют в качестве модели функциональной компартментализации синтеза мРНК, ее процессинга и экспорта в цитоплазму.

    Наблюдаемая "высокоупорядоченная" пространственная структура ядрышка может быть просто следствием функционирования большого числа генов рРНК, организованных в тандемные повторы, что сопровождается накоплением транскриптов РНК-полимеразы I и продуктов их процессинга в окрестностях активно работающих генов. Структура ядрышка является динамической, а его пространственное расположение и структурные особенности зависят от внутриядерной локализации и уровня активности соответствующих генов рРНК.

    Даже геном дрожжей содержит ~200 тандемно повторяющихся генов рРНК. При этом не все гены одинаковы в функциональном отношении: транскрибируется лишь половина последовательностей рДНК, а в их воспроизводстве задействовано лишь ~20% имеющихся областей начала репликации. Перенос генов в область рДНК часто сопровождается их репрессией, что, как полагают, является следствием функционирования механизма подавления гомологичной рекомбинации в участках генома, содержащих тандемные повторы. Мутационное нарушение этого механизма сопровождается образованием сотен внехромосомных кольцевых рДНК, которые неравномерно распределяются между дочерними клетками во время митоза. Накопление материнскими клетками внехромосомных рДНК приводит к уменьшению способности клеток делиться. Этот феномен был назван " старением клеток" (cellular aging) . Кроме того, ядрышко может регулировать вхождение клеток в мейоз, а также активность фосфатазы Cdc 14 , контролирующей прохождение телофазы митоза. Получены данные, что повторяющиеся последовательности рДНК ядрышка служат местом сборки регуляторного белкового комплекса RENT (regulator of nucleolar silencing and telophase exit) , в состав которого входит фосфатаза и три других белка, которые и обеспечивают регуляторные функции ядрышка.

    45S-транскрипты рРНК сначала образуют крупные комплексы, связываясь с большим количеством различных белков, импортируемых из цитоплазмы, где синтезируются все клеточные белки. Большая часть из 70 различных полипептидных цепей, формирующих рибосому, а также 5S-рРНК включаются именно на этой стадии.

    Для правильного протекания процесса сборки необходимы и иные молекулы. Например, в ядрышке присутствуют и другие белки, связывающиеся с РНК, а также определенные маленькие рибонуклепротеиновые частицы (включая U3-snRNP), которые, как полагают, катализируют сборку рибосом. Эти компоненты остаются в ядрышке, а субъединицы рибосом в готовом виде транспортируются в цитоплазму. Особенно заметным компонентом ядрышка является нуклеолин , хорошо изученный белок, который присутствует в больших количествах и, по-видимому, связывается только с транскриптами рибосомной РНК. Нуклеолин особым образом окрашивается серебром. Такое окрашивание характеризует и все ядрышко в целом.

    Во время процессинга 45S-РНК этот гигантский рибонуклеопротеиновый комплекс постепенно теряет часть белков и последовательностей РНК и затем специфически расщепляется, образуя самостоятельные предшественники большой и малой рибосомных субъединиц.

    Через 30 мин после введения радиоактивной метки первые зрелые малые субъединицы рибосом, содержащие меченую 18S-рРНК, выходят из ядрышка и появляются в цитоплазме.

    Сборка больших рибосомных субъединиц, содержащих 28S-РНК, 5,8S-РНК и 5S-РНК, требует несколько больше времени (около 1 ч), поэтому в ядрышке накапливается гораздо больше недостроенных больших субъединиц, чем малых.

    Заключительные стадии созревания рибосом осуществляются только после выхода рибосомных субъединиц из ядра в цитоплазму. Этим достигается изоляция функционирующих рибосом от незрелых ядерных транскриптов.

    Имеются данные, указывающие на участие ядрышка в регуляции клеточного цикла.

    Ядрышко – это производное хромосомы, один из ее локусов, активно функционирующий в интерфазе. Ядрышко клетки является местом образования рибосомных РНК и рибосом, на которых происходит синтез полипептидных цепей. У прокариотических клеток образование рибосом не связано с обособлением специального локуса в виде ядрышка, но, несмотря на отсутствие ядрышек у этих клеток, сам процесс синтеза рибосом во многом сходен.

    В ядрышках содержатся белки нескольких типов:

    • кислые фосфопротеиды,
    • основные белки негистоновой природы.

    Концентрация РНК в ядрышке может быть в 2 – 8 раз выше, чем в ядре, и в 1 – 3 раза выше, чем в цитоплазме. Ядрышковая РНК является предшественником цитоплазматической РНК. Так как от 70 до 90% цитоплазматической РНК является рибосомной, то ядрышко является местом синтеза рибосомной РНК (рРНК).

    РНК ядрышек

    На цистроне рибосомного гена первоначально синтезируется гигантская молекула – предшественник с коэффициентом седиментации 45 S (мол. вес 4,5 106), которая затем расщепляется на две части, дающие начало 18S и 28 S рРНК. При этом около половины первоначально синтезированной молекулы уничтожается. Из ядрышек выделены гетерогенные рибонуклеопротеидные частицы с различными коэффициентами седиментации от 40 S до 80 S и выше, что представляют собой рибонуклеопротеиды – предшественники рибосомных субъединиц. Начиная с 45 S РНК, белок ассоциирует с рРНК, при этом образуются сначала тяжелые предшественники рибосом (около 80 S и 90 S), а потом уже и субъединицы рибосом (60 S и 40 S).

    ДНК ядрышек

    Содержание ДНК в выделенных ядрышках составляет 5 – 12% от сухого веса и 6 – 17% от всей ДНК ядра. ДНК ядрышкового организатора – это та самая ДНК, на которой происходит синтез ядрышковой, т. е. рибосомной РНК. На основе анализа насыщения ДНК при гибридизации с рРНК делается вывод о том, что цистроны, отвечающие за синтез рРНК, располагаются компактно и, возможно, представлены в виде полицистронного участка, входящего в состав ядрышкового организатора . В ядрышке на ДНК вторичной перетяжки локализованы многочисленные одинаковые гены для синтеза рРНК. Синтез же идет путем образования огромного предшественника и дальнейшего его превращения (созревания) в более короткие молекулы РНК для большой и малой субъединиц рибосом.

    Ультраструктура ядрышек

    Отмечена волокнистая или сетчатая структура ядрышек, заключенная в более или менее плотную диффузную массу.

    Волокнистая часть – нуклеолонема, диффузная, гомогенная часть – аморфное вещество, или аморфная часть. Оба эти участка ядрышка отрицательны. У некоторых клеток отдельные нити нуклеолонем сливаются и ядрышки могут быть совершенно однородными.

    Основные структурные компоненты ядрышка :

    • плотные гранулы диаметром около 150 А,
    • тонкие фибриллы толщиной 40 – 80 А.

    Во многих случаях фибриллярный компонент собран в плотную центральную зону (сердцевина), лишенную гранул, а гранулы занимают периферическую зону ядрышка. Между гранулами в этой зоне всегда наблюдаются рыхло расположенные фибриллы толщиной 40 – 80 А. В ряде случаев в этой гранулярной зоне не наблюдается никакой дополнительной структуризации. Но часто эта зона представлена обособленными нитчатыми структурами толщиной около 1500 – 2000 А, состоящими из гранулы и рыхло расположенных фибрилл. Фибриллярная часть ядрышка не всегда собрана в компактную центральную зону.

    Ультраструктура ядрышек зависит от активности синтеза РНК : при высоком уровне синтеза рРНК в ядрышке выявляется большое число гранул, при прекращении синтеза количество гранул падает, ядрышки превращаются в плотные фибриллярные тельца.