Войти
Логопедический портал
  • Картотека игровых упражнений для обучения детей с нарушением речи правильному употреблению предлогов Д игра где что находится предлоги
  • Как определяют происхождение метеоритных кратеров
  • Какие открытия сделал физик Эрнест Резерфорд?
  • Выпускной в воскресной школе (тоош) Воскресная школы – ступенечка к Богу
  • Герои пьесы "Три сестры" Чехова: характеристика героев Смотреть что такое "сестры прозоровы" в других словарях
  • Классификация органических соединений по функциональным группам
  • Системы дифференциальных уравнен методы интегрирования. Как решить систему дифференциальных уравнений операционным методом? Частные решения системы дифференциальных уравнений

    Системы дифференциальных уравнен методы интегрирования. Как решить систему дифференциальных уравнений операционным методом? Частные решения системы дифференциальных уравнений

    Многие системы дифференциальных уравнений, как однородные, так и неоднородные, могут быть сведены к одному уравнению относительно одной неизвестной функции. Покажем метод на примерах.

    Пример 3.1. Решить систему

    Решение. 1) Дифференцируя по t первое уравнение и используя второе и третье уравнения для замены и, находим

    Полученное уравнение дифференцируем по еще раз

    1) Составляем систему

    Из первых двух уравнений системы выразим переменные ичерез
    :

    Подставим найденные выражения для ив третье уравнение системы

    Итак, для нахождения функции
    получили дифференциальное уравнение третьего порядка с постоянными коэффициентами

    .

    2) Интегрируем последнее уравнение стандартным методом: составляем характеристическое уравнение
    , находим его корни
    и строим общее решение в виде линейной комбинации экспонент, учитывая кратность одного из корней:.

    3) Далее, чтобы найти две оставшиеся функции
    и
    , дифференцируем дважды полученную функцию

    Используя связи (3.1) между функциями системы, восстанавливаем оставшиеся неизвестные

    .

    Ответ. ,
    ,.

    Может оказаться, что все известные функции кроме одной исключаются из системы третьего порядка уже при однократном дифференцировании. В таком случае, порядок дифференциального уравнения для ее нахождения будет меньше, чем число неизвестных функций в исходной системе.

    Пример 3.2. Проинтегрировать систему

    (3.2)

    Решение. 1) Дифференцируя по первое уравнение, находим

    Исключая переменные ииз уравнений

    будем иметь уравнение второго порядка относительно

    (3.3)

    2) Из первого уравнения системы (3.2) имеем

    (3.4)

    Подставляя в третье уравнение системы (3.2) найденные выражения (3.3) и (3.4) для и, получим дифференциальное уравнение первого порядка для определения функции

    Интегрируя это неоднородное уравнение с постоянными коэффициентами первого порядка, найдем
    Используя (3.4), находим функцию

    Ответ.
    ,,
    .

    Задание 3.1. Решить однородные системы сведением к одному дифференциальному уравнению.

    3.1.1. 3.1.2.

    3.1.3. 3.1.4.

    3.1.5. 3.1.6.

    3.1.7. 3.1.8.

    3.1.9. 3.1.10.

    3.1.11. 3.1.12.

    3.1.13. 3.1.14.

    3.1.15. 3.1.16.

    3.1.17. 3.1.18.

    3.1.19. 3.1.20.

    3.1.21. 3.1.22.

    3.1.23. 3.1.24.

    3.1.25. 3.1.26.

    3.1.27. 3.1.28.

    3.1.29.
    3.1.30.

    3.2. Решение систем линейных однородных дифференциальных уравнений с постоянными коэффициентами с помощью нахождения фундаментальной системы решений

    Общее решение системы линейных однородных дифференциальных уравнений может быть найдено как линейная комбинация фундаментальных решений системы. В случае систем с постоянными коэффициентами для нахождения фундаментальных решений могут быть использованы методы линейной алгебры.

    Пример 3.3. Решить систему

    (3.5)

    Решение. 1) Перепишем систему в матричном виде

    . (3.6)

    2) Будем искать фундаментальное решение системы в виде вектора
    . Подставляя функции
    в (3.6) и сокращая на, получим

    , (3.7)

    то есть число должно быть собственным числом матрицы
    , а векторсоответствующим собственным вектором.

    3) Из курса линейной алгебры известно, что система (3.7) имеет нетривиальное решение, если ее определитель равен нулю

    ,

    то есть . Отсюда находим собственные значения
    .

    4) Найдем соответствующие собственные векторы. Подставляя в (3.7) первое значение
    , получим систему для нахождения первого собственного вектора

    Отсюда получаем связь между неизвестными
    . Нам достаточно выбрать одно нетривиальное решение. Полагая
    , тогда
    , то есть векторявляется собственным для собственного значения
    , а вектор функции
    фундаментальным решением заданной системы дифференциальных уравнений (3.5). Аналогично, при подстановке второго корня
    в (3.7) имеем матричное уравнение для второго собственного вектора
    . Откуда получаем связь между его компонентами
    . Таким образом, имеем второе фундаментальное решение

    .

    5) Общее решение системы (3.5) строится как линейная комбинация двух полученных фундаментальных решений

    или в координатном виде

    .

    Ответ.

    .

    Задание 3.2. Решить системы, находя фундаментальную систему решений.

    Система такого вида называется нормальной системой дифференциальных уравнений (СНДУ). Для нормальной системы дифференциальных уравнений можно сформулировать теорему о существовании и единственности такую же, как и для дифференциального уравнения.

    Теорема. Если функции определены и непрерывны на открытом множестве, а соответствующие частные производныетоже непрерывны на, то тогда у системы (1) будет существовать решение(2)

    а при наличии начальных условий (3)

    это решение будет единственным.

    Эту систему можно представить в виде:

    Системы линейных дифференциальных уравнений

    Определение. Система Дифференциальных Уравнений называется линейной , если она линейна относительно всех неизвестных функций и их производных.

    (5)

    Общий вид системы Дифференциальных Уравнений

    Если задано начальное условие: , (7)

    то решение будет единственным, при условии, что вектор-функция непрерывна наи коэффициенты матрицы:тоже непрерывные функции.

    Введем линейный оператор , тогда (6) можно переписать в виде:

    если то операторное уравнение (8) называетсяоднородным и имеет вид:

    Так как оператор линейный, то для него выполняются следующие свойства:

    решением уравнения (9).

    Следствие. Линейная комбинация , решение (9).

    Если даны решений (9) и они линейно независимы, то все линейные комбинации вида:(10) только при условии, что все. Это означает, что определитель, составленный из решений (10):

    . Этот определитель называется определителем Вронского для системы векторов .

    Теорема 1. Если определитель Вронского для линейной однородной системы (9) с непрерывными на отрезке коэффициентами, равен нулю хотя бы в одной точке, то решениелинейно зависимы на этом отрезке и, следовательно, определитель Вронского равен нулю на всем отрезке.

    Доказательство: Так как непрерывны, то система (9) удовлетворяет условиюТеоремы о существовании и единственности , следовательно, начальное условие определяет единственное решение системы (9). Определитель Вронского в точкеравен нулю, следовательно, существует такая нетривиальная система, для которой выполняется:. Соответствующая линейная комбинация для другой точкибудет иметь вид, причемудовлетворяет однородным начальным условиям, следовательно, совпадает с тривиальным решением, то естьлинейно зависимы и определитель Вронского равен нулю.

    Определение. Совокупность решений системы (9) называетсяфундаментальной системой решений на если определитель Вронского не обращается в ноль ни в одной точке.

    Определение. Если для однородной системы (9) начальные условия определены следующим образом - , то система решенийназываетсянормальной фундаментальной системой решений .

    Замечание. Если - фундаментальная система или нормальная фундаментальная система, то линейная комбинация- общее решение (9).

    Теорема 2. Линейная комбинация линейно независимых решений,однородной системы (9) с непрерывными на отрезкекоэффициентамибудет общим решением (9) на этом же отрезке.

    Доказательство: Так как коэффициенты непрерывны на, то система удовлетворяет условиям теоремы о существовании и единственности. Следовательно, для доказательства теоремы достаточно показать, что подбором постоянных, можно удовлетворить некоторому произвольно выбранному начальному условию (7). Т.е. можно удовлетворить векторному уравнению:. Так как- общее решение (9), то система разрешима относительно, поскольку вселинейно независимы и. Однозначно определяем, а так каклинейно независимы, то.

    Теорема 3. Если это решение системы (8), арешение системы (9), тогда+будет тоже решение (8).

    Доказательство: По свойствам линейного оператора: 

    Теорема 4. Общее решение (8) на отрезке с непрерывными на этом отрезке коэффициентамии правыми частямиравно сумме общего решения соответствующей однородной системы (9) и частного решениянеоднородной системы (8).

    Доказательство: Так как условия теоремы о существовании и единственности выполнены, следовательно, остается доказать, что будет удовлетворять произвольно заданным начальным значением (7), то есть. (11)

    Для системы (11) всегда можно определить значения . Это можно сделать так как- фундаментальная система решений.

    Задача Коши для дифференциального уравнения первого порядка

    Постановка задачи. Напомним, что решением обыкновенного дифференциального уравнения первого порядка

    y"(t)=f(t, y(t)) (5.1)

    называется дифференцируемая функция у(t), которая при подстановке в уравнение (5.1) обращает его в тождество. График решения дифференциального уравнения называют интегральной кривой. Процесс нахождения решений дифференциального уравнения принято называть интегрированием этого уравнения.

    Исходя из геометрического смысла производной у" заметим, что уравнение (5.1) задает в каждой точке (t, у) плоскости переменных t, у значение f(t, у) тангенса угла aнаклона (к оси 0t) касательной к графику решения, проходящего через эту точку. Величину k=tga=f(t,у) далее будем называть угловым коэффициентом (рис. 5.1). Если теперь в каждой точке (t, у) задать с помощью некоторого вектора направление касательной, определяемое значением f(t, у), то получится так называемое поле направлений (рис.5.2, а). Таким образом, геометрически задачу интегрирования дифференциальных уравнений состоит в нахождении интегральных кривых, которые в каждой своей точке имеют заданное направление касательной (рис. 5.2, б). Для того, чтобы выделить из семейства решений дифференциального уравнения (5.1) одно конкретное решение, задают начальное условие

    y(t 0)=y 0 (5.2)

    Здесь t 0 - некоторое фиксированное значение аргумента t, а у 0 величина, называемая начальным значением. Геометрическая интерпретация использования начального условия состоит в выборе из семейства интегральных кривых той кривой, которая проходит через фиксированную точку (t 0 , у 0).

    Задачу нахождения при t>t 0 решения у(t) дифференциального уравнения (5.1), удовлетворяющего начальному условию (5.2), будем называть задачей Коши. В некоторых случаях представляет интерес поведение решения при всех t>t 0 . Однако чаще ограничиваются определением решения на конечном отрезке .

    Интегрирование нормальных систем

    одним из основных методов интегрирования нормальной системы ДУ является метод сведения системы к одному ДУ высшего порядка. (Обратная задача - переход от ДУ к системе - рассмотрена выше на примере.) Техника этого метода основана на следующих соображениях.

    Пусть задана нормальная система (6.1). Продифференцируем по х любое, например первое, уравнение:

    Подставив в это равенство значения производных из системы (6.1), получим

    или, коротко,

    Продифференцировав полученное равенство еще раз и заменив значения производных из системы (6.1), получим

    Продолжая этот процесс (дифференцируем - подставляем - получаем), находим:

    Соберем полученные уравнения в систему:

    Из первых (n-1) уравнений системы (6.3) выразим функции у 2 , у 3 , ..., y n через х, функцию y 1 и ее производные у" 1 ,у" 1 ,...,у 1 (n-1) . Получим:

    Найденные значения у 2 , у 3 ,..., у n подставим в последнее уравнение системы (6.3). Получим одно ДУ n-го порядка относительно искомой функции Пусть его общее решение есть

    Продифференцировав его (n-1) раз и подставив значения производных в уравнения системы (6.4), найдем функции у 2 , у 3 ,..., у n.

    Пример 6.1. Решить систему уравнений

    Решение: Продифференцируем первое уравнение: у"=4у"-3z". Подставляем z"=2у-3z в полученное равенство: у"=4у"-3(2у-3z), у"-4у"+6у=9z. Составляем систему уравнений:

    Из первого уравнения системы выражаем z через у и у":

    Подставляем значение z во второе уравнение последней системы:

    т. е. у""-у"-6у=0. Получили одно ЛОДУ второго порядка. Решаем его: k 2 -k-6=0, k 1 =-2, k 2 =3 и - общее решение

    уравнения. Находим функцию z. Значения у и подставляем в выражение z через у и у" (формула (6.5)). Получим:

    Таким образом, общее решение данной системы уравнений имеет вид

    Замечание. Систему уравнений (6.1) можно решать методом интегрируемых комбинаций. Суть метода состоит в том, что посредством арифметических операций из уравнений данной системы образуют так называемые интегрируемые комбинации, т. е. легко интегрируемые уравнения относительно новой неизвестной функции.

    Проиллюстрируем технику этого метода на следующем примере.

    Пример 6.2. Решить систему уравнений:

    Решение: Сложим почленно данные уравнения: х"+у"=х+у+2, или (х+у)"=(х+у)+2. Обозначим х+у=z. Тогда имеем z"=z+2. Решаемполученное уравнение:

    Получили так называемый первый интеграл системы. Из него можно выразить одну из искомых функций через другую, тем самым уменьшить на единицу число искомых функций. Например,Тогда первое уравнение системы примет вид

    Найдя из него х (например, с помощью подстановки х=uv), найдем и у.

    Замечание. Данная система «позволяет» образовать еще одну интегрируемую комбинацию: Положив х - у=р, имеем:, или Имея два первых интеграла системы, т. е.и легко найти (складывая и вычитая первые интегралы), что

      Линейный оператор, свойства. Линейная зависимость и независимость векторов. Определитель Вронского для системы ЛДУ.

    Линейный дифференциальный оператор и его свойства. Множество функций, имеющих на интервале (a , b ) не менее n производных, образует линейное пространство. Рассмотрим оператор L n (y ), который отображает функцию y (x ), имеющую производных, в функцию, имеющуюk - n производных:

    С помощью оператора L n (y ) неоднородное уравнение (20) можно записать так:

    L n (y ) = f (x );

    однородное уравнение (21) примет вид

    L n (y ) = 0);

    Теорема 14.5.2 . Дифференциальный оператор L n (y ) является линейным оператором. Док-во непосредственно следует из свойств производных: 1. ЕслиC = const, то 2.Наши дальнейшие действия: сначала изучить, как устроено общее решение линейного однородного уравнения (25), затем неоднородного уравнения (24), и потом научиться решать эти уравнения. Начнём с понятий линейной зависимости и независимости функций на интервале и определим важнейший в теории линейных уравнений и систем объект - определитель Вронского.

    Определитель Вронского. Линейная зависимость и независимость системы функций. Опр. 14.5.3.1. Система функций y 1 (x ), y 2 (x ), …, y n (x ) называется линейно зависимой на интервале (a , b ), если существует набор постоянных коэффициентов , не равных нулю одновременно, таких, что линейная комбинация этих функций тождественно равна нулю на (a , b ): для.Если равенстводлявозможно только при, система функцийy 1 (x ), y 2 (x ), …, y n (x ) называется линейно независимой на интервале (a , b ). Другими словами, функцииy 1 (x ), y 2 (x ), …, y n (x ) линейно зависимы на интервале (a , b ), если существует равная нулю на (a , b ) их нетривиальная линейная комбинация. Функции y 1 (x ),y 2 (x ), …, y n (x ) линейно независимы на интервале (a , b ), если только тривиальная их линейная комбинация тождественно равна нулю на (a , b ). Примеры: 1. Функции 1,x , x 2 , x 3 линейно независимы на любом интервале (a , b ). Их линейная комбинация - многочлен степени- не может иметь на (a , b )больше трёх корней, поэтому равенство = 0 длявозможно только при.Пример 1 легко обобщается на систему функций 1,x , x 2 , x 3 , …, x n . Их линейная комбинация - многочлен степени - не может иметь на (a , b ) больше n корней. 3. Функциилинейно независимы на любом интервале (a , b ), если . Действительно, если, например,, то равенствоимеет место в единственной точке.4. Система функцийтакже линейно независима, если числаk i (i = 1, 2, …, n ) попарно различны, однако прямое доказательство этого факта достаточно громоздко. Как показывают приведённые примеры, в некоторых случаях линейная зависимость или независимость функций доказывается просто, в других случаях это доказательство сложнее. Поэтому необходим простой универсальный инструмент, дающий ответ на вопрос о линейной зависимости функций. Такой инструмент -определитель Вронского .

    Опр. 14.5.3.2. Определителем Вронского (вронскианом) системы n - 1 раз дифференцируемых функций y 1 (x ), y 2 (x ), …, y n (x ) называется определитель

    .

    14.5.3.3.Теорема о вронскиане линейно зависимой системы функций . Если система функций y 1 (x ), y 2 (x ), …, y n (x ) линейно зависима на интервале (a , b ), то вронскиан этой системы тождественно равен нулю на этом интервале. Док-во . Если функции y 1 (x ), y 2 (x ), …, y n (x ) линейно зависимы на интервале (a , b ), то найдутся числа , из которых хотя бы одно отлично от нуля, такие что

    Продифференцируем по x равенство (27) n - 1 раз и составим систему уравнений Будем рассматривать эту систему как однородную линейную систему алгебраических уравнений относительно. Определитель этой системы - определитель Вронского (26). Приэта система имеет нетривиальное решение, следовательно, в каждой точке её определитель равен нулю. Итак,W (x ) = 0 при , т.е.на (a , b ).

    Матричная запись системы обыкновенных дифференциальных уравнений (СОДУ) с постоянными коэффициентами

    Линейную однородную СОДУ с постоянными коэффициентами $\left\{\begin{array}{c} {\frac{dy_{1} }{dx} =a_{11} \cdot y_{1} +a_{12} \cdot y_{2} +\ldots +a_{1n} \cdot y_{n} } \\ {\frac{dy_{2} }{dx} =a_{21} \cdot y_{1} +a_{22} \cdot y_{2} +\ldots +a_{2n} \cdot y_{n} } \\ {\ldots } \\ {\frac{dy_{n} }{dx} =a_{n1} \cdot y_{1} +a_{n2} \cdot y_{2} +\ldots +a_{nn} \cdot y_{n} } \end{array}\right. $,

    где $y_{1} \left(x\right),\; y_{2} \left(x\right),\; \ldots ,\; y_{n} \left(x\right)$ -- искомые функции независимой переменной $x$, коэффициенты $a_{jk} ,\; 1\le j,k\le n$ -- заданные действительные числа представим в матричной записи:

    1. матрица искомых функций $Y=\left(\begin{array}{c} {y_{1} \left(x\right)} \\ {y_{2} \left(x\right)} \\ {\ldots } \\ {y_{n} \left(x\right)} \end{array}\right)$;
    2. матрица производных решений $\frac{dY}{dx} =\left(\begin{array}{c} {\frac{dy_{1} }{dx} } \\ {\frac{dy_{2} }{dx} } \\ {\ldots } \\ {\frac{dy_{n} }{dx} } \end{array}\right)$;
    3. матрица коэффициентов СОДУ $A=\left(\begin{array}{cccc} {a_{11} } & {a_{12} } & {\ldots } & {a_{1n} } \\ {a_{21} } & {a_{22} } & {\ldots } & {a_{2n} } \\ {\ldots } & {\ldots } & {\ldots } & {\ldots } \\ {a_{n1} } & {a_{n2} } & {\ldots } & {a_{nn} } \end{array}\right)$.

    Теперь на основе правила умножения матриц данную СОДУ можно записать в виде матричного уравнения $\frac{dY}{dx} =A\cdot Y$.

    Общий метод решения СОДУ с постоянными коэффициентами

    Пусть имеется матрица некоторых чисел $\alpha =\left(\begin{array}{c} {\alpha _{1} } \\ {\alpha _{2} } \\ {\ldots } \\ {\alpha _{n} } \end{array}\right)$.

    Решение СОДУ отыскивается в следующем виде: $y_{1} =\alpha _{1} \cdot e^{k\cdot x} $, $y_{2} =\alpha _{2} \cdot e^{k\cdot x} $, \dots , $y_{n} =\alpha _{n} \cdot e^{k\cdot x} $. В матричной форме: $Y=\left(\begin{array}{c} {y_{1} } \\ {y_{2} } \\ {\ldots } \\ {y_{n} } \end{array}\right)=e^{k\cdot x} \cdot \left(\begin{array}{c} {\alpha _{1} } \\ {\alpha _{2} } \\ {\ldots } \\ {\alpha _{n} } \end{array}\right)$.

    Отсюда получаем:

    Теперь матричному уравнению данной СОДУ можно придать вид:

    Полученное уравнение можно представить так:

    Последнее равенство показывает, что вектор $\alpha $ с помощью матрицы $A$ преобразуется в параллельный ему вектор $k\cdot \alpha $. Это значит, что вектор $\alpha $ является собственным вектором матрицы $A$, соответствующий собственному значению $k$.

    Число $k$ можно определить из уравнения$\left|\begin{array}{cccc} {a_{11} -k} & {a_{12} } & {\ldots } & {a_{1n} } \\ {a_{21} } & {a_{22} -k} & {\ldots } & {a_{2n} } \\ {\ldots } & {\ldots } & {\ldots } & {\ldots } \\ {a_{n1} } & {a_{n2} } & {\ldots } & {a_{nn} -k} \end{array}\right|=0$.

    Это уравнение называется характеристическим.

    Пусть все корни $k_{1} ,k_{2} ,\ldots ,k_{n} $ характеристического уравнения различны. Для каждого значения $k_{i} $ из системы $\left(\begin{array}{cccc} {a_{11} -k} & {a_{12} } & {\ldots } & {a_{1n} } \\ {a_{21} } & {a_{22} -k} & {\ldots } & {a_{2n} } \\ {\ldots } & {\ldots } & {\ldots } & {\ldots } \\ {a_{n1} } & {a_{n2} } & {\ldots } & {a_{nn} -k} \end{array}\right)\cdot \left(\begin{array}{c} {\alpha _{1} } \\ {\alpha _{2} } \\ {\ldots } \\ {\alpha _{n} } \end{array}\right)=0$ может быть определена матрица значений $\left(\begin{array}{c} {\alpha _{1}^{\left(i\right)} } \\ {\alpha _{2}^{\left(i\right)} } \\ {\ldots } \\ {\alpha _{n}^{\left(i\right)} } \end{array}\right)$.

    Одно из значений в этой матрице выбирают произвольно.

    Окончательно, решение данной системы в матричной форме записывается следующим образом:

    $\left(\begin{array}{c} {y_{1} } \\ {y_{2} } \\ {\ldots } \\ {y_{n} } \end{array}\right)=\left(\begin{array}{cccc} {\alpha _{1}^{\left(1\right)} } & {\alpha _{1}^{\left(2\right)} } & {\ldots } & {\alpha _{2}^{\left(n\right)} } \\ {\alpha _{2}^{\left(1\right)} } & {\alpha _{2}^{\left(2\right)} } & {\ldots } & {\alpha _{2}^{\left(n\right)} } \\ {\ldots } & {\ldots } & {\ldots } & {\ldots } \\ {\alpha _{n}^{\left(1\right)} } & {\alpha _{2}^{\left(2\right)} } & {\ldots } & {\alpha _{2}^{\left(n\right)} } \end{array}\right)\cdot \left(\begin{array}{c} {C_{1} \cdot e^{k_{1} \cdot x} } \\ {C_{2} \cdot e^{k_{2} \cdot x} } \\ {\ldots } \\ {C_{n} \cdot e^{k_{n} \cdot x} } \end{array}\right)$,

    где $C_{i} $ -- произвольные постоянные.

    Задача

    Решить систему ДУ $\left\{\begin{array}{c} {\frac{dy_{1} }{dx} =5\cdot y_{1} +4y_{2} } \\ {\frac{dy_{2} }{dx} =4\cdot y_{1} +5\cdot y_{2} } \end{array}\right. $.

    Записываем матрицу системы: $A=\left(\begin{array}{cc} {5} & {4} \\ {4} & {5} \end{array}\right)$.

    В матричной форме данная СОДУ записывается так: $\left(\begin{array}{c} {\frac{dy_{1} }{dt} } \\ {\frac{dy_{2} }{dt} } \end{array}\right)=\left(\begin{array}{cc} {5} & {4} \\ {4} & {5} \end{array}\right)\cdot \left(\begin{array}{c} {y_{1} } \\ {y_{2} } \end{array}\right)$.

    Получаем характеристическое уравнение:

    $\left|\begin{array}{cc} {5-k} & {4} \\ {4} & {5-k} \end{array}\right|=0$, то есть $k^{2} -10\cdot k+9=0$.

    Корни характеристического уравнения: $k_{1} =1$, $k_{2} =9$.

    Составляем систему для вычисления $\left(\begin{array}{c} {\alpha _{1}^{\left(1\right)} } \\ {\alpha _{2}^{\left(1\right)} } \end{array}\right)$ при $k_{1} =1$:

    \[\left(\begin{array}{cc} {5-k_{1} } & {4} \\ {4} & {5-k_{1} } \end{array}\right)\cdot \left(\begin{array}{c} {\alpha _{1}^{\left(1\right)} } \\ {\alpha _{2}^{\left(1\right)} } \end{array}\right)=0,\]

    то есть $\left(5-1\right)\cdot \alpha _{1}^{\left(1\right)} +4\cdot \alpha _{2}^{\left(1\right)} =0$, $4\cdot \alpha _{1}^{\left(1\right)} +\left(5-1\right)\cdot \alpha _{2}^{\left(1\right)} =0$.

    Положив $\alpha _{1}^{\left(1\right)} =1$, получаем $\alpha _{2}^{\left(1\right)} =-1$.

    Составляем систему для вычисления $\left(\begin{array}{c} {\alpha _{1}^{\left(2\right)} } \\ {\alpha _{2}^{\left(2\right)} } \end{array}\right)$ при $k_{2} =9$:

    \[\left(\begin{array}{cc} {5-k_{2} } & {4} \\ {4} & {5-k_{2} } \end{array}\right)\cdot \left(\begin{array}{c} {\alpha _{1}^{\left(2\right)} } \\ {\alpha _{2}^{\left(2\right)} } \end{array}\right)=0, \]

    то есть $\left(5-9\right)\cdot \alpha _{1}^{\left(2\right)} +4\cdot \alpha _{2}^{\left(2\right)} =0$, $4\cdot \alpha _{1}^{\left(2\right)} +\left(5-9\right)\cdot \alpha _{2}^{\left(2\right)} =0$.

    Положив $\alpha _{1}^{\left(2\right)} =1$, получаем $\alpha _{2}^{\left(2\right)} =1$.

    Получаем решение СОДУ в матричной форме:

    \[\left(\begin{array}{c} {y_{1} } \\ {y_{2} } \end{array}\right)=\left(\begin{array}{cc} {1} & {1} \\ {-1} & {1} \end{array}\right)\cdot \left(\begin{array}{c} {C_{1} \cdot e^{1\cdot x} } \\ {C_{2} \cdot e^{9\cdot x} } \end{array}\right).\]

    В обычной форме решение СОДУ имеет вид: $\left\{\begin{array}{c} {y_{1} =C_{1} \cdot e^{1\cdot x} +C_{2} \cdot e^{9\cdot x} } \\ {y_{2} =-C_{1} \cdot e^{1\cdot x} +C_{2} \cdot e^{9\cdot x} } \end{array}\right. $.

    Основные понятия и определения К системе дифференциальных уравнений приводит уже простейшая задача динамики точки: даны силы, действующие на материальную точку; найти закон движения, т. е. найти функции х = x(t), у = y(t), z = z(t), выражающие зависимость координат движущейся точки от времени. Система, которая при этом получается, в общем случае имеет вид Здесь x, у, z - координаты движущейся точки, t - время, f,g,h - известные функции своих аргументов. Система вида (1) называется канонической. Обращаясь к общему случаю системы т дифференциальных уравнений с т неизвестными функциями аргумента t, назовем канонической систему вида разрешенную относительно старших производных. Система уравнений первого порядка, разрешенных относительно производных от искомых функций, называется нормальной. Если принять за новые вспомогательные функции, то общую каноническую систему (2) можно заменить эквивалентной ей нормальной системой, состоящей из уравнений. Поэтому достаточно рассматривать лишь нормальные системы. Например, одно уравнение является частным случаем канонической системы. Положив ^ = у, в силу исходного уравнения будем иметь В результате получаем нормальную систему уравнений СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕН Методы интегрирования Метод исключения Метод интегрируемых комбинаций Системы линейных дифференциальных уравнений Фундаментальная матрица Метод вариации постоянных Системы линейных дифференциальных уравнений с постоянными коэффициентами Матричный метод эквивалентную исходному уравнению. Определение 1. Решением нормальной системы (3) на интервале (а, Ь) изменения аргумента t называется всякая система п функций " дифференцируемых на интервале, обращающая уравнения системы (3) в тождества по t на интервале (а, Ь). Задача Коши для системы (3) формулируется так: найти решение (4) системы, удовлетворяющее при t = to начальным условиям Теорема 1 (существования и единственности решения задами Коим). Пусть имеем нормальную систему дифференциальных уравнений и пусть функции определены в некоторой (n + 1)-мерной области D изменения переменных t, Х\, х 2, ..., хп. Если существует окрестность ft тонки в которой функции ft непрерывны по совокупности аргументов и имеют ограниченные частные производные по переменным Х\, х2, ..., хп, то найдется интервал to - Л0 изменения t, на котором существует единственное решение нормальной системы (3), удовлетворяющее начальным условиям Определение 2. Система п функций зависящих от tun произвольных постоянных называется общим решением нормальной системы (3) в некоторой области П существования и единственности решения задачи Коши, если 1) при любых допустимых значениях система функций (6) обращает уравнения (3) в тождества, 2) в области П функции (6) решают любую задачу Коши. Решения, получающиеся из общего при конкретных значениях постоянных называются частными решениями. Обратимся для наглядности к нормальной системе двух уравнений, Будем рассматривать систему значений t> Х\, х2 как прямоугольные декартовы координаты точки трехмерного пространства, отнесенного к системе координат Otx\х2. Решение системы (7), принимающее при t - to значения, определяет в пространстве некоторую линию, проходящую через точку)- Эта линия называется интегральной кривой нормальной системы (7). Задача Ко-ши для системы (7) получает следующую геометрическую формулировку: в пространстве переменных t> Х\, х2 найти интегральную кривую, проходящую через данную точку Mo(to,x1,x2) (рис. 1). Теорема 1 устанавливает существование и единственность такой кривой. Нормальной системе (7) и ее решению можно придать еще такое истолкование: будем независимую переменную t рассматривать как параметр, а решение системы - как параметрические уравнения кривой на плоскости х\Ох2. Эту плоскость переменных Х\Х2 называют фазовой плоскостью. В фазовой плоскости решение (0 системы (7), принимающее при t = t0 начальные значения х°{, х2, изображается кривой АВ, проходящей через точку). Эту кривую называют траекторией системы (фазовой траекторией). Траектория системы (7) есть проекция интегральной кривой на фазовую плоскость. По интегральной кривой фазовая траектория определяется однозначно, но не наоборот. § 2. Методы интегрирования систем дифференциальных уравнений 2.1. Метод исключения Один из методов интегрирования - метод исключения. Частным случаем канонической системы является одно уравнение n-го порядка, разрешенное относительно старшей производной, Введя новые функции уравнение следующей нормальной системой п уравнений: заменим это одно уравнение n-го порядка эквивалентно нормальной системе (1). Можно утверждать и обратное, что, вообще говоря, нормальная система п уравнений первого порядка эквивалентна одному уравнению порядка п. На этом и основан метод исключения для интегрирования систем дифференциальных уравнений. Делается это так. Пусть имеем нормальную систему дифференциальных уравнений Продифференцируем первое из уравнений (2) по t. Имеем Заменяя в правой части произв или, короче, Уравнение (3) снова дифференцируем по t. Принимая во внимание систему (2), получим или Продолжая этот процесс, найдем Предположим, что определитель (якобиан системы функций отличен от нуля при рассматриваемых значениях Тогда система уравнений, составленная из первого уравнения системы (2) и уравнений будет разрешима относительно неизвестных выразятся через Внося найденные выражения в уравнение получим одно уравнение n-го порядка Из самого способа его построения следует, что если) есть решения системы (2), то функция X\(t) будет решением уравнения (5). Обратно, пусть - решение уравнения (5). Дифференцируя это решение по t, вычислим и подставим найденные значения как известные функции По предположению эту систему можно разрешить относительно, хп как функции от t. Можно показать, что так построенная система функций составляет решение системы дифференциальных уравнений (2). Пример. Требуется проинтегрировать систему Дифференцируя первое уравнение системы, имеем откуда, используя второе уравнение, получаем - линейное дифференциальное уравнение второго порядка с постоянными коэффициентами с одной неизвестной функцией. Его общее решение имеет вид. В силу первого уравнения системы находим функцию. Найденные функции x(t), y(t), как легко проверить, при любых значениях С| и С2 удовлетворяют заданной системе. Функции можно представить в виде откуда видно, что интегральные кривые системы (6) - винтовые линии с шагом с общей осью х = у = 0, которая также является интегральной кривой (рис. 3). Исключая в формулах (7) параметр получаем уравнение так что фазовые траектории данной системы суть окружности с центром в начале координат - проекции винтовых линий на плоскость При Л=0 фазовая траектория состоит из одной точки, называемой точкой покоя системы. ». Может оказаться, что функции нельзя выразить через Тогда уравнения n-го порядка, эквивалентного исходной системе, мы не получим. Вот простой пример. Систему уравнений нельзя заменить эквивалентным уравнением второго порядка относительно х\ или х2. Эта система составлена из пары уравнений 1-го порядка, каждое из которых интегрируется независимо, что дает Метод интегрируемых комбинаций Интегрирование нормальных систем дифференциальных уравнений dXi иногда осуществляется методом интегрируемых комбинаций. Интегрируемой комбинацией называется дифференциальное уравнение, являющееся следствием уравнений (8), но уже легко интегрирующееся. Пример. Проинтегрировать систему СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕН Методы интегрирования Метод исключения Метод интегрируемых комбинаций Системы линейных дифференциальных уравнений Фундаментальная матрица Метод вариации постоянных Системы линейных дифференциальных уравнений с постоянными коэффициентами Матричный метод 4 Складывая почленно данные уравнения, находим одну интегрируемую комбинацию: Вычитая почленно из первого уравнения системы второе, получаем вторую интегрируемую комбинацию: откуда Мы нашли два конечных уравнения з которых легко определяется общее решение системы: Одна интегрируемая комбинация дает возможность получить одно уравнение связывающее независимую переменную t и неизвестные функции. Такое конечное уравнение называется первым интегралом системы (8). Иначе: первым интегралом системы дифференциальных уравнений (8) называется дифференцируемая функция не равная тождественно постоянной, но сохраняющая постоянное значение на любой интегральной кривой этой системы. Если найдено п первых интегралов системы (8) и все они независимы, т. е. якобиан системы функций отличен от нуля: Система дифференциальных уравнений называется линейной, если она линейна относительно неизвестных функций и их производных, входящих в уравнение. Система п линейных уравнений первого порядка, записанная в нормальной форме, имеет вид или, в матричной форме, Теорема 2. Если все функции, непрерывны на отрезке, то в достаточно малой окрестности каждой точки., хп),где), выполнены условия теоремы существования и единственности решения задачи Кошии, следовательно, через каждую такую точку проходит единственная интегральная кривая системы (1). Действительно, в таком случае правые части системы (1) непрерывны по совокупности аргументов t)x\,x2}... ,хп и их частные производные по, ограничены, так как эти производные равны непрерывным на отрезке коэффициентам Введем линейный оператор Тогда система (2) запишется в виде Если матрица F - нулевая, на интервале (а, 6), то система (2) называется линейной однородной и имеет вид Приведем некоторые теоремы, устанавливающие свойства решений линейных си- стем. Теорема 3. Если X(t) является решением линейной однородной системы где с - произвольная постоянная, является решением той же системы. Теорема 4. Сумма двух решений однородной линейной системы уравнений является решением той же системы. Следствие. Линейная комбинация с произвольными постоянными коэффициентами с, решений линейной однородной системы дифференциальных уравнений является решением той же системы. Теорема 5. Если X(t) есть решение линейной неоднородной системы - решение соответствующей однородной системы то сумма будет решением неоднородной системы Действительно, по условию, Пользуясь свойством аддитивности оператора получаем Это означает, что сумма есть решение неоднородной системы уравнений Определение. Векторы где называются линейно зависимыми на интервале, если существуют постоянные числа такие, что при, причем по крайней мере одно из чисел а, не равно нулю. Если тождество (5) справедливо только при то векторы называются линейно независимыми на (а, Ь). Заметим, что одно векторное тождество (5) эквивалентно п тождествам: . Определитель называется определителем Вронского системы векторов. Определение. Пусть имеем линейную однородную систему где -матрица с элементами Система п решений линейной однородной системы (6), линейно независимых на интервале, называется фундаментальной. Теорема 6. Определитель Вронского W(t) фундаментальной на интервале системы решений линейной однородной системы (6) с непрерывными на отрезке а b коэффициентами a-ij{t) отличен от нуля во всех точках интервала (а, 6). Теорема 7 (о структуре общего решения линейной однородной системы). Общим решением в области линейной однородной системы с непрерывными на отрезке коэффициентами является линейная комбинация п линейно независимых на интервале а решений системы (6): произвольные постоянные числа). Пример. Система имеет, как нетрудно проверить, решения Эш решения линейно независимы, так как определитель Вронского отличен от нуля: " Общее решение системы имеет вид или - произвольные постоянные). 3.1. Фундаментальная матрица Квадратная матрица столбцами которой являются линейно независимые решения системы (6), называется фундаментальной матрицей этой системы. Нетрудно проверить, что фундаментальная матрица удовлетворяет матричному уравнению Если X(t) - фундаментальная матрица системы (6), то общее решение системы можно представить в виде - постоянная матрица-столбец с произвольными элементами. Полагая в имеем откуда следовательно, Матрица называется матрицей Коши. С ее помощью решение системы (6) можно представить так: Теорема 8 (о структуре общего решения линейной неоднородной системы дифференциальных уравнений). Общее решение в области линейной неоднородной системы дифференциальных уравнений с непрерывными на отрезке коэффициентами и правыми частями fi(t) равно сумме общего решения соответствующей однородной системы и какого-нибудь частного решения X(t) неоднородной системы (2): 3.2. Метод вариации постоянных Если известно общее решение линейной однородной системы (6), то частное решение неоднородной системы можно находить методом вариации постоянных (метод Лаг-ранжа). Пусть есть общее решение однородной системы (6), тогда dXk причем решения линейно независимы. Будем искать частное решение неоднородной системы где - неизвестные функции от t. Дифференцируя имеем Подставляя получаем Так как то для определения получаем систему или, в развернутом виде, Система (10) есть линейная алгебраическая система относительно 4(0 > определителем которой является определитель Вронского W(t) фундаментальной системы решений. Этот определитель отличен от нуля всюду на интервале так что система) имеет единственное решение где МО - известные непрерывные функции. Интегрируя последние соотношения, находим Подставляя эти значения, находим частное решение системы (2): (здесь под символом понимается одна из первообразных для функции §4. Системы линейных дифференциальных уравнений с постоянными коэффициентами Рассмотрим линейную систему дифференциальных уравнений в которой все коэффициенты - постоянные. Чаще всего такая система интегрируется сведением ее к одному уравнению более высокого порядка, причем это уравнение будет также линейным с постоянными коэффициентами. Другой эффективный метод интегрирования систем с постоянными коэффициентами - метод преобразования Лапласа. Мы рассмотрим еще метод Эйлера интегрирования линейных однородных систем дифференциальных уравнений с постоянными коэффициентами. Он состоит в следующем. Метод Эйлера Будем искать решение системы где - постоянные. Подставляя ж* в форме (2) в систему (1), сокращая на е* и перенося все члены в одну часть равенства, получаем систему Для того, чтобы эта система (3) линейных однородных алгебраических уравнений с п неизвестными ап имела нетривиальное решение, необходимо и достаточно, чтобы ее определитель был равен нулю: Уравнение (4) называется характеристическим. В его левой части стоит многочлен относительно А степени п. Из этого уравнения определяются те значения А, при которых система (3) имеет нетривиальные решения а\, Если все корни характеристического уравнения (4) различны, то, подставляя их по очереди в систему (3), находим соответствующие им нетривиальные решения, этой системы и, следовательно, находим п решений исходной системы дифференциальных уравнений (1) в виде где второй индекс указывает номер решения, а первый - номер неизвестной функции. Построенные таким образом п частных решений линейной однородной системы (1) образуют, как можно проверить, фундаментальную систему решений этой системы. Следовательно, общее решение однородной системы дифференциальных уравнений (1) имеет вид - произвольные постоянные. Случай, когда характеристическое уравнение имеет кратные корни, мы рассматривать не будем. М Ищем решение в виде Характеристическое уравнение Система (3) для определения 01,02 выглядит так: Подставляя получаем откуда Следовательно, Полагая находим поэтому Общее решение данной системы: СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕН Методы интегрирования Метод исключения Метод интегрируемых комбинаций Системы линейных дифференциальных уравнений Фундаментальная матрица Метод вариации постоянных Системы линейных дифференциальных уравнений с постоянными коэффициентами Матричный метод Изложим еще матричный метод интегрирования однородной системы (1). Запишем систему (1) в виде матрица с постоянными действительными элементами a,j. Напомним некоторые понятия из линейной алгебры. Вектор g Ф О называется собственным вектором матрицы А, если Число А называется собственным значением матрицы А, отвечающим собственному вектору g, и является корнем характеристического уравнения где I - единичная матрица. Будем предполагать, что все собственные значения А„ матрицы А различны. В этом случае собственные векторы линейно независимы и существует п х п-матрица Т, приводящая матрицу А к диагональному виду, т. е. такая, что Столбцами матрицы Т являются координаты собственных векторов Введем еще следующие понятия. Пусть В(£) - п х n-матрица, элементы 6,;(0 которой суть функции аргумента t, определенные на множестве Матрица B(f) называется непрерывной на П, если непрерывны на Q все ее элементы 6,j(f). Матрица В(*) называется дифференцируемой на П, если дифференцируемы на Q все элементы этой матрицы. При этом производной ^р- матрицы В(*) называется матрица, элементами которой являются производные -соответствующих элементов матрицы В(*). Пусть B - вектор-столбец. Учитывая правила алгебры матриц, непосредственной проверкой убеждаемся в справедливости формулы В частности, если В - постоянная матрица, то так как ^ есть нуль-матрица. Теорема 9. Если собственные значения матрицы А различны, то общее решение системы (7) имеет вид где - собственные векторы-столбцы матрицы произвольные постоянные числа. Введем новый неизвестный вектор-столбец по формуле где Т - матрица, приводящая матрицу А к диагональному виду. Подставляя получим систему Умножая обе части последнего соотношения слева на Т 1 и учитывая, что Т 1 AT = Л, придем к системе Мы получили систему из п независимых уравнений, которая без труда интегрируется: (12) Здесь - произвольные постоянные числа. Вводя единичные п-мерные векторы-столбцы решение можно представить в виде Так как столбцы матрицы Т есть собственные векторы матрицы собственный вектор матрицы А. Поэтому, подставляя (13) в (11), получим формулу (10): Таким образом, если матрица А системы дифференциальных уравнений (7) имеет различные собственные значения, для получения общего решения этой системы: 1) находим собственные значения „ матрицы как корни алгебраического уравнения 2) находим все собственные векторы 3) выписываем общее решение системы дифференциальных уравнений (7) по формуле (10). Пример 2. Решить систему Матричный метод 4 Матрица А системы имеет вид 1) Составляем характеристическое уравнение Корни характеристического уравнения. 2) Находим собственные векторы Для А = 4 получаем систему откуда = 0|2, так что Аналогично для А = 1 находим I 3) Пользуясь формулой (10), получаем общее решение системы дифференциальных уравнений Корни характеристического уравнения могут быть действительными и комплексными. Так как по предположению коэффициенты ау системы (7) действительные, то характеристическое уравнение будет иметь действительные коэффициенты. Поэтому наряду с комплексным корнем А оно будет иметь и корень \*, комплексно сопряженный с А. Нетрудно показать, что если g - собственный вектор, отвечающий собственному значению А, то А* - тоже собственное значение, которому отвечает собственный вектор g*, комплексно сопряженный с g. При комплексном Л решение системы (7) taioKe будет комплексным. Действительная часть и мнимая часть этого решения являются решениями системы (7). Собственному значению Л* будет отвечать пара действительных решений. та же пара, что и для собственного значения Л. Таким образом, паре А, А* комплексно сопряженных собственных значений отвечает пара действительных решений системы (7) дифференциальных уравнений. Пусть - действительные собственные значения, комплексные собственные значения. Тогда всякое действительное решение системы (7) имеет вид где с, - произвольные постоянные. Пример 3. Решить систему -4 Матрица системы 1) Характеристическое уравнение системы Его корни Собственные векторы матрицы 3) Решение системы где - произвольные комплексные постоянные. Найдем действительные решения системы. Пользуясь формулой Эйлера получаем Следовательно, всякое действительное решение системы имеет вид произвольные действительные числа. Упражнения Методом исключения проинтегрируйте системы: Методом интефируемых комбинаций проинтефируйте системы: Матричным способом проинтефируйте системы: Ответы