Войти
Логопедический портал
  • Что значит моя мечта. Значение слова мечтать. Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова
  • Многозначное слово «mean Как переводится слово mean
  • Лётчик-ас кожедуб иван никитович — трижды герой ссср
  • Теорема Безу и следствие из нее
  • Характеристика пирогова из рассказа чудесный доктор Описание доктора из рассказа чудесный доктор
  • Основные моменты из жизни поэта
  • Низкочастотные волны. Презентация к уроку на тему «Шкала электромагнитных волн Контроль технологических процессов

    Низкочастотные волны. Презентация к уроку на тему «Шкала электромагнитных волн Контроль технологических процессов

    «Электромагнитные колебания» - Энергия магнитного поля. Вариант1. Организационный этап. Величина, обратная емкости, Радиан (рад). Радиан в секунду (рад/ с). Вариант2. Заполни таблицу. Этап обобщения и систематизации материала. План урока. Вариант1 1.Какая из систем, изображенных на рисунке, не является колебательной? 3.По графику определите а)амплитуду, б)период в) частоту колебаний. а) А. 0,2м Б.-0,4 м В.0,4м б) А. 0,4с Б. 0,2с В.0.6с в) А. 5Гц Б.25Гц В. 1.6Гц.

    «Механические колебания» - Длина волны (?) – расстояние между ближайшими частицами, колеблющимися в одинаковой фазе. График гармонических колебаний. Примеры свободных механических колебаний: Пружинный маятник. Упругие волны – механические возмущения, распространяющиеся в упругой среде. Математический маятник. Колебания. Гармонические колебания.

    «Механические колебания 11 класс» - Волны бывают: 2. Продольные - в которых колебания происходят вдоль направления распространения волн. Величины, характеризующие волну: Визуальное представление звуковой волны. В вакууме механическая волна возникнуть не может. 1. Наличие упругой среды 2. Наличие источника колебаний – деформации среды.

    «Малые колебания» - Волновые процессы. Звуковые колебания. В процессе колебаний происходит превращение кинетической энергии в потенциальную и обратно. Математический маятник. Пружинный маятник. Положение системы задаётся углом отклонения. Малые колебания. Явление резонанса. Гармонические колебания. Механика. Уравнение движения: m?l2???=-m?g?l?? или??+(g/l)??=0 Частота и период колебаний:

    «Колебательные системы» - Внешними силами - это силы, действующие на тела системы со стороны тел, не входящих в неё. Колебания – это движения, которые повторяются через определённые интервалы времени. Трение в системе должно быть достаточно мало. Условия возникновения свободного колебания. Вынужденными колебаниями называются колебания тел под действием внешних периодически изменяющихся сил.

    «Гармонические колебания» - Рисунок 3. Ox – опорная прямая. 2.1 Способы представления гармонических колебаний. Такие колебания называются линейно поляризованными. Модулированными. 2. Разность фаз равна нечетному числу?, то есть. 3. Начальная разность фаз равна?/2. 1. Начальные фазы колебаний одинаковы. Начальная фаза определяется из соотношения.

    Цели урока:

    Тип урока:

    Форма проведения: лекция с презентацией

    Карасёва Ирина Дмитриевна, 17.12.2017

    3355 349

    Содержимое разработки

    Конспект урока на тему:

    Виды излучений. Шкала электромагнитных волн

    Урок разработан

    учителем ГУ ЛНР «ЛОУСОШ № 18»

    Карасёвой И.Д.

    Цели урока: рассмотреть шкалу электромагнитных волн, дать характеристику волнам разных диапазонов частот; показать роль различных видов излучений в жизни человека, влияние различных видов излучений на человека; систематизировать материал по теме и углубить знания учащихся об электромагнитных волнах; развивать устную речь учащихся, творческие навыки учащихся, логику, память; познавательные способности; формировать интерес учащихся к изучению физики; воспитывать аккуратность, трудолюбие.

    Тип урока: урок формирования новых знаний.

    Форма проведения: лекция с презентацией

    Оборудование: компьютер, мультимедийный проектор, презентация «Виды излучений.

    Шкала электромагнитных волн»

    Ход урока

      Организационный момент.

      Мотивация учебной и познавательной деятельности.

    Вселенная – это океан электромагнитных излучений. Люди живут в нем, по большей части, не замечая пронизывающих окружающее пространство волн. Греясь у камина или зажигая свечу, человек заставляет работать источник этих волн, не задумываясь об их свойствах. Н о знание - сила: открыв природу электромагнитного излучения, человечество в течение XX столетия освоило и поставило себе на службу самые различные его виды.

      Постановка темы и целей урока.

    Сегодня мы с вами совершим путешествие по шкале электромагнитных волн, рассмотрим виды электромагнитного излучения разных диапазонов частот. Запишите тему урока: «Виды излучений. Шкала электромагнитных волн» (Слайд 1)

    Каждое излучение мы будем изучать по следующему обобщенному плану (Слайд 2) .Обобщенный план для изучения излучения:

    1. Название диапазона

    2. Длина волны

    3. Частота

    4. Кем был открыт

    5. Источник

    6. Приёмник (индикатор)

    7. Применение

    8. Действие на человека

    В ходе изучения темы вы должны заполнить следующую таблицу:

    Таблица "Шкала электромагнитных излучений"

    Название излучения

    Длина волны

    Частота

    Кем было

    открыто

    Источник

    Приёмник

    Применение

    Действие на человека

      Изложение нового материала.

    (Слайд 3)

    Длина электромагнитных волн бывает самой различной: от значений порядка 10 13 м (низкочастотные колебания) до 10 -10 м ( -лучи). Свет составляет ничтожную часть широкого спектра электромагнитных волн. Тем не менее, именно при изучении этой малой части спектра были открыты другие излучения с необычными свойствами.
    Принято выделять низкочастотное излучение, радиоизлучение, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгеновские лучи и -излучение. Самое коротковолновое -излучение испускает атомные ядра.

    Принципиального различия между отдельными излучениями нет. Все они представляют собой электромагнитные волны, порождаемые заряженными частицами. Обнаруживаются электромагнитные волны, в конечном счете, по их действию на заряженные частицы. В вакууме излучение любой длины волны распространяется со скоростью 300 000 км/с. Границы между отдельными областями шкалы излучений весьма условны.

    (Слайд 4)

    Излучения различной длины волны отличаются друг от друга по способу их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации.

    Все перечисленные виды электромагнитного излучения порождаются также космическими объектами и успешно исследуются с помощью ракет, искусственных спутников Земли и космических кораблей. В первую очередь, это относится к рентгеновскому и -излучению, сильно поглощаемым атмосферой.

    Количественные различия в длинах волн приводят к существенным качественным различиям.

    Излучения различной длины волны очень сильно отличаются друг от друга по поглощению их веществом. Коротковолновые излучения (рентгеновское и особенно -лучи) поглощаются слабо. Непрозрачные для волн оптического диапазона вещества прозрачны для этих излучений. Коэффициент отражения электромагнитных волн также зависит от длины волны. Но главное различие между длинноволновым и коротковолновым излучениями в том, что коротковолновое излучение обнаруживает свойства частиц.

    Рассмотрим каждое излучение.

    (Слайд 5)

    Низкочастотное излучение возникает в диапазоне частот от 3 · 10 -3 до 3 10 5 Гц. Этому излучению соответствует длина волны от 10 13 - 10 5 м. Излучением таких, сравнительно малых частот, можно пренебречь. Источником низкочастотного излучения являются генераторы переменного тока. Применяются при плавке и закалке металлов.

    (Слайд 6)

    Радиоволны занимают диапазон частот 3·10 5 - 3·10 11 Гц. Им соответствует длина волны 10 5 - 10 -3 м. Источником радиоволн, так же как и низкочастотного излучения является переменный ток. Также источником являются генератор радиочастот, звезды, в том числе Солнце, галактики и метагалактики. Индикаторами являются вибратор Герца, колебательный контур.

    Большая частота радиоволн, по сравнению с низкочастотным излучением приводит к заметному излучению радиоволн в пространство. Это позволяет использовать их для передачи информации на различные расстояния. Передаются речь, музыка (радиовещание), телеграфные сигналы (радиосвязь), изображения различных объектов (радиолокация).

    Радиоволны используются для изучения структуры вещества и свойств той среды, в которой они распространяются. Исследование радиоизлучения космических объектов – предмет радиоастрономии. В радиометеорологии изучают процессы по характеристикам принимаемых волн.

    (Слайд 7)

    Инфракрасное излучение занимает диапазон частот 3 · 10 11 - 3,85 · 10 14 Гц. Им соответствует длина волны 2·10 -3 - 7,6 ·10 -7 м.

    Инфракрасное излучение было открыто в 1800 году астрономом Уильямом Гершелем. Изучая повышение температуры термометра, нагреваемого видимым светом, Гершель обнаружил наибольшее нагревание термометра вне области видимого света (за красной областью). Невидимое излучение, учитывая его место в спектре, было названо инфракрасным. Источником инфракрасного излучения является излучение молекул и атомов при тепловых и электрических воздействиях. Мощный источник инфракрасного излучения – Солнце, около 50% его излучения лежит в инфракрасной области. На инфракрасное излучение приходится значительная доля (от 70 до 80 %) энергии излучения ламп накаливания с вольфрамовой нитью. Инфракрасное излучение испускает электрическая дуга и различные газоразрядные лампы. Излучения некоторых лазеров лежит в инфракрасной области спектра. Индикаторами инфракрасного излучения являются фото и терморезисторы, специальные фотоэмульсии. Инфракрасное излучение используют для сушки древесины, пищевых продуктов и различных лакокрасочных покрытий (инфракрасный нагрев), для сигнализации при плохой видимости, дает возможность применять оптические приборы, позволяющие видеть в темноте, а также при дистанционном управлении. Инфракрасные лучи используются для наведения на цель снарядов и ракет, для обнаружения замаскированного противника. Эти лучи позволяют определить различие температур отдельных участков поверхности планет, особенности строения молекул вещества (спектральный анализ). Инфракрасная фотография применяется в биологии при изучении болезней растений, в медицине при диагностике кожных и сосудистых заболеваний, в криминалистике при обнаружении подделок. При воздействии на человека вызывает повышение температуры человеческого тела.

    (Слайд 8)

    Видимое излучение - единственный диапазон электромагнитных волн, воспринимаемым человеческим глазом. Световые волны занимают достаточно узкий диапазон: 380 - 670 нм ( = 3,85 10 14 - 8 10 14 Гц). Источником видимого излучения являются валентные электроны в атомах и молекулах, изменяющие свое положение в пространстве, а также свободные заряды, движущиеся ускоренно. Эта часть спектра дает человеку максимальную информацию об окружающем мире. По своим физическим свойствам она аналогична другим диапазонам спектра, являясь лишь малой частью спектра электромагнитных волн. Излучение, имеющее разную длину волны (частоты) в диапазоне видимого излучения, оказывает различное физиологическое воздействие на сетчатку человеческого глаза, вызывая психологическое ощущение света. Цвет - не свойство электромагнитной световой волны самой по себе, а проявление электрохимического действия физиологической системы человека: глаз, нервов, мозга. Приблизительно можно назвать семь основных цветов, различаемых человеческим глазом в видимом диапазоне (в порядке возрастания частоты излучения): красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Запоминание последовательности основных цветов спектра облегчает фраза, каждое слово которой начинается с первой буквы названия основного цвета: «Каждый Охотник Желает Знать, Где Сидит Фазан». Видимое излучение может влиять па протекание химических реакций в растениях (фотосинтез) и в организмах животных и человека. Видимое излучение испускают отдельные насекомые (светлячки) и некоторые глубоководные рыбы за счет химических реакций в организме. Поглощение растениями углекислого газа в результате процесса фотосинтеза и выделения кислорода способствует поддержанию биологической жизни на Земле. Также видимое излучение применяется при освещении различных объектов.

    Свет - источник жизни на Земле и одновременно источник наших представлений об окружающем мире.

    (Слайд 9)

    Ультрафиолетовое излучение, не видимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучением в пределахдлин волн 3,8 ∙10 -7 - 3∙10 -9 м. (=8*10 14 - 3*10 16 Гц). Ультрафиолетовое излучение было открыто в 1801 году немецким ученым Иоганном Риттером. Изучая почернение хлористого серебра под действием видимого света, Риттер обнаружил, что серебро чернеет еще более эффективно в области, находящейся за фиолетовым краем спектра, где видимое излучение отсутствует. Невидимое излучение, вызвавшее это почернение, было названо ультрафиолетовым.

    Источник ультрафиолетового излучения - валентные электроны атомов и молекул, также ускоренно движущиеся свободные заряды.

    Излучение накаленных до температур - 3000 К твердых тел содержит заметную долю ультрафиолетового излучения непрерывного спектра, интенсивность которого растет с увеличением температуры. Более мощный источник ультрафиолетового излучения - любая высокотемпературная плазма. Для различных применений ультрафиолетового излучения используются ртутные, ксеноновые и др. газоразрядные лампы. Естественные источники ультрафиолетового излучения - Солнце, звезды, туманности и другие космические объекты. Однако лишь длинноволновая часть их излучения( 290 нм) достигает земной поверхности. Для регистрации ультрафиолетового излучения при

     = 230 нм используются обычные фотоматериалы, в более коротковолновой области к нему чувствительны специальные маложелатиновые фотослои. Применяются фотоэлектрические приемники,использующие способность ультрафиолетового излучения вызывать ионизацию и фотоэффект: фотодиоды,ионизационные камеры, счетчики фотонов, фотоумножители.

    В малых дозах ультрафиолетовое излучение оказывает благотворное, оздоровительное влияние на человека, активизируя синтез вит амина D в организме, а также вызывая загар. Большая доза ультрафиолетового излучения может вызвать ожог кожи и раковые новообразования (в 80 % излечимые). Кроме того, чрезмерное ультрафиолетовое излучение ослабляет иммунную систему организма, способствуя развитию некоторых заболеваний. Ультрафиолетовое излучение оказывает также бактерицидное действие: под действием этого излучения гибнут болезнетворные бактерии.

    Ультрафиолетовое излучение применяется в люминесцентных лампах, в криминалистике (по снимкам обнаруживают подделки документов), в искусствоведении (с помощью ультрафиолетовых лучей можно обнаружить на картинах не видимые глазом следы реставрации). Практически не пропускает ультрафиолетовое излучение оконное стекло, т.к. его поглощает оксид железа, входящий в состав стекла. По этой причине даже в жаркий солнечный день нельзя загореть в комнате при закрытом окне.

    Человеческий глаз не видит ультрафиолетовое излучение, т.к. роговая оболочка глаза и глазная линза поглощают ультрафиолет. Ультрафиолетовое излучение видят некоторые животные. Например, голубь ориентируется по Солнцу даже в пасмурную погоду.

    (Слайд 10)

    Рентгеновское излучение - это электромагнитное ионизирующее излучение, занимающее спектральную область между гамма - и ультрафиолетовым излучением в пределах длин волн от 10 -12 - 1 0 -8 м (частот 3*10 16 - 3-10 20 Гц ). Рентгеновское излучение было открыто в 1895 году немецким физиком В. К. Рентгеном. Наиболее распространенным источником рентгеновского излучения является рентгеновская трубка, в которой ускоренные электрическим нолем электроны бомбардируют металлический анод. Рентгеновское излучение может быть получено при бомбардировке мишени ионами высокой энергии. В качестве источников рентгеновского излучения могут служить также некоторые радиоактивные изотопы, синхротроны - накопители электронов. Естественными источниками рентгеновского излучения является Солнце и другие космические объекты

    Изоб ражения предметов в рентгеновском излучении получают на специальной рентгеновской фотопленке. Рентгеновское излучение можно регистрировать с помощью ионизационной камеры, сцинтилляционного счетчика, вторично-электронных или каналовых электронных умножителей, микроканальных пластин. Благодаря высокой проникающей способности рентгеновское излучение применяется в рентгеноструктурном анализе (исследовании структуры кристаллической решетки), при изучении структуры молекул, обнаружении дефектов в образцах, в медицине (рентгеновские снимки, флюорография, лечение раковых заболеваний), в дефектоскопии (обнаружение дефектов в отливках, рельсах), в искусствоведении (обнаружение старинной живописи, скрытой под слоем поздней росписи), в астрономии (при изучении рентгеновских источников), криминалистике. Большая доза рентгеновского излучения приводит к ожогам и изменению структуры крови человека. Создание приемников рентгеновского излучения и размещение их на космических станциях позволило обнаружить рентгеновское излучение сотен звезд, а также оболочек сверхновых звезд и целых галактик.

    (Слайд 11)

    Гамма излучение - коротковолновое электромагнитное излучение, занимающее весь диапазон частот  = 8∙10 14 - 10 17 Гц, что соответствует длинам волн  = 3,8·10 -7 - 3∙10 -9 м. Гамма-излучение было открыто французским ученым Полем Вилларом в 1900 году.

    Изучая излучение радия в сильном магнитном поле, Виллар обнаружил коротковолновое электромагнитное излучение, не отклоняющееся, как и свет, магнитным полем. Оно было названогамма-излучением. Гамма-излучение связано с ядерными процессами, явлениями радиоактивного распада, происходящими с некоторыми веществами, как на Земле, так и в космосе. Гамма-излучение можно регистрировать с помощью ионизационных и пузырьковых камер, а также с помощью специальных фотоэмульсий. Используются при исследовании ядерных процессов, в дефектоскопии. Гамма-излучение отрицательно воздействует на человека.

    (Слайд 12)

    Итак, низкочастотное излучение, радиоволны, инфракрасное излучение, видимое излучение, ультрафиолетовое излучение, рентгеновское излучение, -излучение представляют собой различные виды электромагнитного излучения.

    Если мысленно разложить эти виды по возрастанию частоты или убыванию длины волны, то получится широкий непрерывный спектр – шкала электромагнитных излучений (учитель показывает шкалу). К опасным видам излучения относятся: гамма-излучение, рентгеновские лучи и ультрафиолетовое излучение, остальные – безопасны.

    Деление электромагнитных излучений по диапазонам условное. Четкой границы между областями нет. Названия областей сложились исторически, они лишь служат удобным средством классификации источников излучений.

    (Слайд 13)

    Все диапазоны шкалы электромагнитных излучений имеют общие свойства:

      физическая природа всех излучений одинакова

      все излучения распространяются в вакууме с одинаковой скоростью, равной 3*10 8 м/с

      все излучения обнаруживают общие волновые свойства (отражение, преломление, интерференцию, дифракцию, поляризацию)

    5. Подведение итогов урока

    В заключение урока учащиеся заканчивают работу над таблицей.

    (Слайд 14)

    Вывод:

      Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами.

      Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга.

      Волновые свойства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых.

      Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства.

    Все это служит подтверждением закона диалектики (переход количественных изменений в качественные).

      Конспект (выучить), заполнить в таблице

    последний столбец (действие ЭМИ на человека) и

    подготовить сообщение о применении ЭМИ

    Содержимое разработки


    ГУ ЛНР «ЛОУСОШ № 18»

    г. Луганска

    Карасёва И.Д.


    ОБОБЩЁННЫЙ ПЛАН ИЗУЧЕНИЯ ИЗЛУЧЕНИЯ

    1. Название диапазона.

    2. Длина волны

    3. Частота

    4. Кем был открыт

    5. Источник

    6. Приёмник (индикатор)

    7. Применение

    8. Действие на человека

    ТАБЛИЦА «ШКАЛА ЭЛЕКТРОМАГНИТНЫХ ВОЛН»

    Название излучения

    Длина волны

    Частота

    Кем открыт

    Источник

    Приёмник

    Применение

    Действие на человека



    Излучения отличаются друг от друга:

    • по способу получения;
    • по методу регистрации.

    Количественные различия в длинах волн приводят к существенным качественным различиям, по-разному поглощаются веществом (коротковолновые излучения – рентгеновское и гамма-излучения) – поглощаются слабо.

    Коротковолновое излучение обнаруживает свойства частиц.


    Низкочастотные колебания

    Длина волны (м)

    10 13 - 10 5

    Частота (Гц)

    3 · 10 -3 - 3 · 10 5

    Источник

    Реостатный альтернатор, динамомашина,

    Вибратор Герца,

    Генераторы в электрических сетях (50 Гц)

    Машинные генераторы повышенной (промышленной) частоты (200 Гц)

    Телефонные сети (5000Гц)

    Звуковые генераторы (микрофоны, громкоговорители)

    Приемник

    Электрические приборы и двигатели

    История открытия

    Оливер Лодж (1893 г.), Никола Тесла (1983)

    Применение

    Кино, радиовещание (микрофоны, громкоговорители)


    Радиоволны

    Длина волны(м)

    Частота(Гц)

    10 5 - 10 -3

    Источник

    3 · 10 5 - 3 · 10 11

    Колебательный контур

    Макроскопические вибраторы

    Звёзды, галактики, метагалактики

    Приемник

    История открытия

    Искры в зазоре приемного вибратора (вибратор Герца)

    Свечение газоразрядной трубки, когерера

    Б. Феддерсен (1862 г.), Г. Герц (1887 г.), А.С. Попов, А.Н. Лебедев

    Применение

    Сверхдлинные - Радионавигация, радиотелеграфная связь, передача метеосводок

    Длинные – Радиотелеграфная и радиотелефонная связь, радиовещание, радионавигация

    Средние - Радиотелеграфия и радиотелефонная связь радиовещание, радионавигация

    Короткие - радиолюбительская связь

    УКВ - космическая радио связь

    ДМВ - телевидение, радиолокация, радиорелейная связь, сотовая телефонная связь

    СМВ- радиолокация, радиорелейная связь, астронавигация, спутниковое телевидение

    ММВ - радиолокация


    Инфракрасное излучение

    Длина волны(м)

    2 · 10 -3 - 7,6∙10 -7

    Частота (Гц)

    3∙10 11 - 3,85∙10 14

    Источник

    Любое нагретое тело: свеча, печь, батарея водяного отопления, электрическая лампа накаливания

    Человек излучает электромагнитные волны длиной 9 · 10 -6 м

    Приемник

    Термоэлементы, болометры, фотоэлементы, фоторезисторы, фотопленки

    История открытия

    У. Гершель (1800 г.), Г. Рубенс и Э. Никольс (1896 г.),

    Применение

    В криминалистике, фотографирование земных объектов в тумане и темноте, бинокль и прицелы для стрельбы в темноте, прогревание тканей живого организма (в медицине), сушка древесины и окрашенных кузовов автомобилей, сигнализация при охране помещений, инфракрасный телескоп.


    Видимое излучение

    Длина волны(м)

    6,7∙10 -7 - 3,8 ∙10 -7

    Частота(Гц)

    4∙10 14 - 8 ∙10 14

    Источник

    Солнце, лампа накаливания, огонь

    Приемник

    Глаз, фотопластинка, фотоэлементы, термоэлементы

    История открытия

    М. Меллони

    Применение

    Зрение

    Биологическая жизнь


    Ультрафиолетовое излучение

    Длина волны(м)

    3,8 ∙10 -7 - 3∙10 -9

    Частота(Гц)

    8 ∙ 10 14 - 3 · 10 16

    Источник

    Входят в состав солнечного света

    Газоразрядные лампы с трубкой из кварца

    Излучаются всеми твердыми телами, у которых температура больше 1000 ° С, светящиеся (кроме ртути)

    Приемник

    Фотоэлементы,

    Фотоумножители,

    Люминесцентные вещества

    История открытия

    Иоганн Риттер, Лаймен

    Применение

    Промышленная электроника и автоматика,

    Люминисценнтные лампы,

    Текстильное производство

    Стерилизация воздуха

    Медицина, косметология


    Рентгеновское излучение

    Длина волны(м)

    10 -12 - 10 -8

    Частота(Гц)

    3∙10 16 - 3 · 10 20

    Источник

    Электронная рентгеновская трубка (напряжение на аноде – до 100 кВ, катод – накаливаемая нить, излучение – кванты большой энергии)

    Солнечная корона

    Приемник

    Фотопленка,

    Свечение некоторых кристаллов

    История открытия

    В. Рентген, Р. Милликен

    Применение

    Диагностика и лечение заболеваний (в медицине), Дефектоскопия (контроль внутренних структур, сварных швов)


    Гамма - излучение

    Длина волны(м)

    3,8 · 10 -7 - 3∙10 -9

    Частота(Гц)

    8∙10 14 - 10 17

    Энергия(ЭВ)

    9,03 10 3 – 1, 24 10 16 Эв

    Источник

    Радиоактивные атомные ядра, ядерные реакции, процессы превращения вещества в излучение

    Приемник

    счетчики

    История открытия

    Поль Виллар (1900 г.)

    Применение

    Дефектоскопия

    Контроль технологических процессов

    Исследование ядерных процессов

    Терапия и диагностика в медицине



    ОБЩИЕ СВОЙСТВА ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ

    физическая природа

    всех излучений одинакова

    все излучения распространяются

    в вакууме с одинаковой скоростью,

    равной скорости света

    все излучения обнаруживают

    общие волновые свойства

    поляризация

    отражение

    преломление

    дифракция

    интерференция


    • Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами.
    • Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга.
    • Волновые свойства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых.
    • Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства.

    • § 68 (читать)
    • заполнить последний столбец таблицы (действие ЭМИ на человека)
    • подготовить сообщение о применении ЭМИ

    Предварительный просмотр:

    Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


    Подписи к слайдам:

    Шкала электромагнитных волн. Виды, свойства и применение.

    Из истории открытий… 1831 – Майкл Фарадей установил, что любое изменение магнитного поля вызывает появление в окружающем пространстве индукционного (вихревого) электрического поля.

    1864 – Джеймс - Клерк Максвелл высказал гипотезу о существовании электромагнитных волн, способных распространятся в вакууме и диэлектриках. Однажды начавшийся в некоторой точке процесс изменения электромагнитного поля будет непрерывно захватывать новые области пространства. Это и есть электромагнитная волна.

    1887 - Генрих Герц опубликовал работу "О весьма быстрых электрических колебаниях", где описал свою экспериментальную установку - вибратор и резонатор, - и свои опыты. При электрических колебаниях в вибраторе в пространстве вокруг него возникает вихревое переменное электромагнитное поле, которое регистрируется резонатором.

    Электромагнитные волны - электромагнитные колебания, распространяющиеся в пространстве с конечной скоростью.

    Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами. Волновые свойства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства.

    Низкочастотные колебания Длина волны(м) 10 13 - 10 5 Частота(Гц) 3· 10 -3 - 3 ·10 3 Энергия(ЭВ) 1 – 1,24 ·10 -10 Источник Реостатный альтернатор, динамомашина, Вибратор Герца, Генераторы в электрических сетях (50 Гц) Машинные генераторы повышенной (промышленной) частоты (200 Гц) Телефонные сети (5000Гц) Звуковые генераторы (микрофоны, громкоговорители) Приемник Электрические приборы и двигатели История открытия Лодж (1893 г.), Тесла (1983) Применение Кино, радиовещание(микрофоны, громкоговорители)

    Радиоволны Получаются с помощью колебательных контуров и макроскопических вибраторов. Свойства: радиоволны различных частот и с различными длинами волн по-разному поглощаются и отражаются средами. проявляют свойства дифракции и интерференции. Длины волн охватывают область от 1 мкм до 50 км

    Применение: Радиосвязь, телевидение, радиолокация.

    Инфракрасное излучение (тепловое) Излучается атомами или молекулами вещества. Инфракрасное излучение дают все тела при любой температуре. Свойства: проходит через некоторые непрозрачные тела, а также сквозь дождь, дымку, снег, туман; производит химическое действие (фототгластинки); поглощаясь веществом, нагревает его; невидимо; способно к явлениям интерференции и дифракции; регистрируется тепловыми методами.

    Применение: Прибор ночного видения, криминалистика, физиотерапия, в промышленности для сушки изделий, древесины, фруктов

    Видимое излучение Свойства: отражение, преломление, воздействует на глаз, способно к явлению дисперсии, интерференции, дифракции. Часть электромагнитного излучения, воспринимаемая глазом (от красного до фиолетового). Диапазон длин волн занимает небольшой интервал приблизительно от 390 до750 нм.

    Ультрафиолетовое излучение Источники: газоразрядные лампы с кварцевыми трубками. Излучается всеми твердыми телами, у которых t 0> 1 ООО°С, а также светящимися парами ртути. Свойства: Высокая химическая активность, невидимо, большая проникающая способность, убивает микроорганизмы, в небольших дозах благоприятно влияет на организм человека (загар), но в больших дозах оказывает отрицательное воздействие, изменяет развитие клеток, обмен веществ.

    Применение: в медицине, в промышленности.

    Рентгеновские лучи Излучаются при больших ускорениях электронов. Свойства: интерференция, дифракция рентгеновских лучей на кристаллической решетке, большая проникающая способность. Облучение в больших дозах вызывает лучевую болезнь. Получают при помощи рентгеновской трубки: электроны в вакуумной трубке (р =3 атм) ускоряются электрическим полем при высоком напряжении, достигая анода, при соударении резко тормозятся. При торможении электроны движутся с ускорением и излучают электромагнитные волны с малой длиной (от 100 до 0,01 нм)

    Применение: В медицине с целью диагностики заболеваний внутренних органов; в промышленности для контроля внутренней структуры различных изделий.

    γ -излучение Источники: атомное ядро (ядерные реакции). Свойства: Имеет огромную проникающую способность, оказывает сильное биологическое воздействие. Длина волны менее 0,01 нм. Самое высокоэнергетическое излучение

    Применение: В медицине, производстве (γ -дефектоскопия).

    Воздействие ЭМВ на организм человека

    Спасибо за внимание!





























    1 из 27

    Презентация на тему: Электромагнитные колебания

    № слайда 1

    Описание слайда:

    № слайда 2

    Описание слайда:

    познакомиться с историей открытия электромагнитных колебаний познакомиться с историей открытия электромагнитных колебаний познакомиться с развитием взглядов на природу света глубже усвоить теорию колебаний выяснить, как на практике применяются электромагнитных колебаний научиться объяснять электромагнитные явления в природе обобщить знания об электромагнитных колебаниях и волнах различной природы происхождения

    № слайда 3

    Описание слайда:

    № слайда 4

    Описание слайда:

    «Ток - это то, что создает магнитное поле» «Ток - это то, что создает магнитное поле» Максвелл впервые ввел понятие поле как носитель электромагнитной энергии, которая обнаружена на опыте. Физикам открылась бездонная глубина фундаментальной идеи теории Максвелла.

    № слайда 5

    Описание слайда:

    Впервые электромагнитные волны были получены Г.Герцем в его классических опытах выполненных в 1888 – 1889 гг. Для возбуждения электромагнитных волн Герц использовал искровой генератор (катушку Румкорфа). Впервые электромагнитные волны были получены Г.Герцем в его классических опытах выполненных в 1888 – 1889 гг. Для возбуждения электромагнитных волн Герц использовал искровой генератор (катушку Румкорфа).

    № слайда 6

    Описание слайда:

    24 марта 1896г., на заседании Физического отделения Русского физико-химического общества А.С.Попов демонстрировал передачу первой в мире радиограммы. 24 марта 1896г., на заседании Физического отделения Русского физико-химического общества А.С.Попов демонстрировал передачу первой в мире радиограммы. Вот что писал впоследствии об этом историческом событии профессор О.Д.Хвольсон: «Я на этом заседании присутствовал и ясно помню все детали. Станция отправления находилась в Химическом институте университета, приемная станция в аудитории старого физического кабинета. Расстояние приблизительно 250м. Передача происходила таким образом, что буквы передавались по алфавиту Морзе и притом знаки были ясно слышны. Первое сообщение было «Heinrich Hertz.»

    № слайда 7

    Описание слайда:

    № слайда 8

    Описание слайда:

    Чтобы передавать звук, например, человеческую речь надо изменять параметры излучаемой волны, или, как говорят, модулировать ее. Незатухающие электромагнитные колебания характеризуются фазой, частотой и амплитудой. Поэтому для передачи этих сигналов необходимо изменять один из этих параметров. Наиболее распространена амплитудная модуляция, которая применяется радиостанциями для диапазонов длинных, средних и коротких волн. Частотную модуляцию применяют в передатчиках, работающих на ультракоротких волнах. Чтобы передавать звук, например, человеческую речь надо изменять параметры излучаемой волны, или, как говорят, модулировать ее. Незатухающие электромагнитные колебания характеризуются фазой, частотой и амплитудой. Поэтому для передачи этих сигналов необходимо изменять один из этих параметров. Наиболее распространена амплитудная модуляция, которая применяется радиостанциями для диапазонов длинных, средних и коротких волн. Частотную модуляцию применяют в передатчиках, работающих на ультракоротких волнах.

    № слайда 9

    Описание слайда:

    Для воспроизведения в приемнике переданного звукового сигнала модулированные высокочастотные колебания необходимо демодулировать (детектировать). Для этого используют нелинейные выпрямляющие устройства: полупроводниковые выпрямители или электронные лампы(в простейшем случае диоды). Для воспроизведения в приемнике переданного звукового сигнала модулированные высокочастотные колебания необходимо демодулировать (детектировать). Для этого используют нелинейные выпрямляющие устройства: полупроводниковые выпрямители или электронные лампы(в простейшем случае диоды).

    № слайда 10

    Описание слайда:

    № слайда 11

    Описание слайда:

    Естественными источниками инфракрасного излучения являются: Солнце, Земля, звезды, планеты. Естественными источниками инфракрасного излучения являются: Солнце, Земля, звезды, планеты. Искусственными источниками инфракрасного излучения являются любое тело, температура которого выше температуры окружающей среды: костер, горящая свеча, работающий двигатель внутреннего сгорания, ракета, включенная электрическая лампочка.

    № слайда 12

    Описание слайда:

    № слайда 13

    Описание слайда:

    многие вещества прозрачны для инфракрасного излучения многие вещества прозрачны для инфракрасного излучения проходя через атмосферу Земли, сильно поглощается парами воды отражательная способность многих металлов для инфракрасного излучения значительно больше, чем для световых волн: алюминий, медь, серебро отражают до 98 % инфракрасного излучения

    № слайда 14

    Описание слайда:

    № слайда 15

    Описание слайда:

    В промышленности инфракрасное излучение используется для сушки окрашенных поверхностей и подогрева материалов. Для этой цели создано большое число разнообразных нагревателей, в том числе специальные электролампы. В промышленности инфракрасное излучение используется для сушки окрашенных поверхностей и подогрева материалов. Для этой цели создано большое число разнообразных нагревателей, в том числе специальные электролампы.

    № слайда 16

    Описание слайда:

    Наиболее удивительная и чудесная смесь Наиболее удивительная и чудесная смесь цветов - белый цвет. И. Ньютон А началось все, казалось бы, с далекого от практики, чисто научного исследования преломления света на границе стеклянной пластины и воздуха… Опыты Ньютона не только положили начало большим направлениям современной оптики. Они привели самого Ньютона и его последователей к грустному выводу: в сложных приборах с большим количеством линз и призм обязательно происходит белого света на его красивые цветные составляющие, и всякое оптическое изобретение будет сопровождаться пестрой каймой, искажающей представление о рассматриваемом предмете.

    № слайда 17

    Описание слайда:

    № слайда 18

    Описание слайда:

    Естественным источником ультрафиолетового излучения являются Солнце, звезды, туманности. Естественным источником ультрафиолетового излучения являются Солнце, звезды, туманности. Искусственными источниками ультрафиолетового излучения являются нагретые до температуры 3000 К и выше твердые тела, и высокотемпературная плазма.

    № слайда 19

    Описание слайда:

    № слайда 20

    Описание слайда:

    Для обнаружения и регистрации ультрафиолетового излучения используются обычные фотоматериалы. Для измерения мощности излучения применяются болометры с датчиками, чувствительными к ультрафиолетовому излучению, термоэлементы, фотодиоды. Для обнаружения и регистрации ультрафиолетового излучения используются обычные фотоматериалы. Для измерения мощности излучения применяются болометры с датчиками, чувствительными к ультрафиолетовому излучению, термоэлементы, фотодиоды.

    Описание слайда:

    Широко применяется в криминалистике, искусствоведении, в медицине, в производственных помещениях пищевой и фармацевтической промышленности, на птицефабриках, на химических предприятиях. Широко применяется в криминалистике, искусствоведении, в медицине, в производственных помещениях пищевой и фармацевтической промышленности, на птицефабриках, на химических предприятиях.

    № слайда 23

    Описание слайда:

    Было открыто немецким физиком Вильгельмом Рентгеном в 1895г. При изучении ускоренного движения заряженных частиц в разрядной трубке. Источником рентгеновского излучения является изменение состояния электронов внутренних оболочек атомов или молекул, а также ускоренно движущиеся свободные электроны. Проникающая способность этого излучения была столь велика, что Рентген мог рассматривать скелет своей руки на экране. Рентгеновское излучение применяется: в медицине, в криминалистике, в промышленности, в научных исследованиях. Было открыто немецким физиком Вильгельмом Рентгеном в 1895г. При изучении ускоренного движения заряженных частиц в разрядной трубке. Источником рентгеновского излучения является изменение состояния электронов внутренних оболочек атомов или молекул, а также ускоренно движущиеся свободные электроны. Проникающая способность этого излучения была столь велика, что Рентген мог рассматривать скелет своей руки на экране. Рентгеновское излучение применяется: в медицине, в криминалистике, в промышленности, в научных исследованиях.

    № слайда 24

    Описание слайда:

    № слайда 25

    Описание слайда:

    Самое коротковолновое магнитное излучение, занимающее весь диапазон частот больше 3*1020 Гц., что соответствует длинам волн меньше 10-12м. Оно было открыто французским ученым Полем Вилларом в 1900г. Обладает еще большей проникающей способностью чем рентгеновское излучение. Оно проходит сквозь метровый слой бетона, и слой свинца толщиной несколько сантиметров. Гамма-излучение возникает при взрыве ядерного оружия вследствие радиоактивного распада ядер. Самое коротковолновое магнитное излучение, занимающее весь диапазон частот больше 3*1020 Гц., что соответствует длинам волн меньше 10-12м. Оно было открыто французским ученым Полем Вилларом в 1900г. Обладает еще большей проникающей способностью чем рентгеновское излучение. Оно проходит сквозь метровый слой бетона, и слой свинца толщиной несколько сантиметров. Гамма-излучение возникает при взрыве ядерного оружия вследствие радиоактивного распада ядер.

    № слайда 26

    Описание слайда:

    изучение истории открытия волн разного диапазона позволяет убедительно показать диалектический характер развития взглядов, идей и гипотез, ограниченность тех или иных законов и вместе с тем неограниченное приближение человеческого знания ко все более сокровенным тайнам природы изучение истории открытия волн разного диапазона позволяет убедительно показать диалектический характер развития взглядов, идей и гипотез, ограниченность тех или иных законов и вместе с тем неограниченное приближение человеческого знания ко все более сокровенным тайнам природы открытие Герцем электромагнитных волн, которые обладают теми же свойствами, что и свет, имело решающее значение для утверждения, что свет – электромагнитная волна анализ информации обо всем спектре электромагнитных волн позволяет составить более полную картину структуры объектов во Вселенной

    № слайда 27

    Описание слайда:

    Касьянов В.А. Физика 11 кл.: Учебн. для общеобразоват. Учреждений. – 4-е изд., стереотип. – М.: Дрофа, 2004. – 416с. Касьянов В.А. Физика 11 кл.: Учебн. для общеобразоват. Учреждений. – 4-е изд., стереотип. – М.: Дрофа, 2004. – 416с. Колтун М.М. Мир физики: Научно-художественная лит-ра/Оформление Б. Чупрыгина. – М.: Дет. Лит., 1984. – 271 с. Мякишев Г.Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений. – 7-е изд. – М.: Просвещение, 2000. – 254 с. Мякишев Г.Я., Буховцев Б.Б. Физика: Учеб. для 10 кл. общеобразоват. учреждений. – М.:Просвещение, 1983. – 319 с. Орехов В.П. Колебания и волны в курсе физики средней школы. Пособие для учителей. М., «Просвещение», 1977. – 176 с. Я познаю мир: Дет. Энцикл.: Физика/Под общ. Ред. О.Г.Хинн. – М.: ТКО «АСТ», 1995. – 480 с. www. 5ballov.ru

    краткое содержание других презентаций

    «Трансформатор напряжения» - Изобретатель трансформатора. Генератор переменного тока. Коэффициент трансформации. Напряжение. Трансформатор. Физический прибор. Условная схема высоковольтной линии передачи. Уравнение мгновенного значения силы тока. Передача электроэнергии. Принцип действия трансформатора. Устройство трансформатора. Период. Проверь себя.

    «Сила Ампера» - Ориентирующее действие МП на контур с током используют в электроизмерительных приборах магнитоэлектрической системы – амперметрах и вольтметрах. Ампер Андре Мари. Действие магнитного поля на проводники с током. Сила Ампера. Под действием силы Ампера катушка колеблется вдоль оси громкоговорителя в такт с колебаниями тока. Определить положение полюсов магнита, создающего магнитное поле. Применение силы Ампера.

    ««Механические волны» физика 11 класс» - Физические характеристики волны. Звук. Виды волн. Эхо. Значение звука. Распространение волн в упругих средах. Волна - это колебания, распространяющиеся в пространстве. Звуковые волны в различных средах. Немного из истории. Механизм распространения звука. Что такое звук. Механические волны. Характеристики звуковых волн. Тип звуковых волн. Во время полёта летучие мыши поют песни. Это интересно. Приемники звуковых волн.

    «Ультразвук в медицине» - Лечение ультразвуком. Рождение ультразвука. План. Вредно ли ультразвуковое исследование. Ультразвуковые процедуры. Ультразвуковое исследование. Ультразвук в медицине. Детская энциклопедия. Вредно ли ультразвуковое лечение. Ультразвук в помощь фармакологам.

    «Световая интерференция» - Качественные задачи. Кольца Ньютона. Формулы. Интерференция света. Условия когерентности световых волн. Интерференция световых волн. Сложение волн. Интерференция механических волн. Сложение в пространстве двух (или нескольких) когерентных волн. Цели урока. Опыт Юнга. Как изменится радиус колец. Кольца Ньютона в отраженном свете.

    ««Световые волны» физика» - Расчёт увеличения линзы. Принцип Гюйгенса. Световые волны. Закон отражения света. Полное отражение. Основные свойства линзы. Закон преломления света. Интерференция света. Вопросы повторения. Дифракция света. Дисперсия света.